如果用DPMFoam求解稀相流会怎么样?误差大么
- 
							
							
							
							
							
							
这俩套方程都是文献中看到的,可以参考本帖24楼。我自己的求解器中采用这种形式 \begin{equation} 
 m_\mathrm{dpm}\frac{\partial \mathbf{U}_ \mathrm{dpm}}{\partial t}=\mathbf{F}_ \mathrm{drag}+m_\mathrm{dpm}\mathbf{g}+\frac{m_\mathrm{dpm}}{\rho_\mathrm{dpm}}\nabla p_\mathrm{c}+\mathrm{Others}
 \end{equation}俩种形式可以互相转换。依据$p=p_0+\rho_\rc \bfg\bfh$即可相互推导  
- 
							
							
							
							
\begin{equation} 
 \label{DPM} m_\dpm\frac{\rd \bfU_\dpm}{\rd t}=-\frac{m_\dpm}{\rho_\dpm}\nabla p+m_\dpm\bfg+\frac{m_\dpm}{\rho_\dpm}\frac{3}{4}\frac{C_\rD\rho_\rc}{d_\rd}\left|\bfU_\rc-\bfU_\dpm\right|\left(\bfU_\rc-\bfU_\dpm\right)+\mathrm{OtherForces}.
 \end{equation}
 伯努利:
 \begin{equation}
 \label{bnl} \nabla p=\rho_\rc\bfg
 \end{equation}
 代入:
 \begin{equation}
 \label{DPM3} m_\dpm\frac{\rd \bfU_\dpm}{\rd t}=m_\dpm\bfg\left(1-\frac{\rho_\rc}{\rho_\dpm}\right)+\frac{m_\dpm}{\rho_\dpm}\frac{3}{4}\frac{C_\rD\rho_\rc}{d_\rd}\left|\bfU_\rc-\bfU_\dpm\right|\left(\bfU_\rc-\bfU_\dpm\right)+\mathrm{OtherForces}.
 \end{equation}
  
- 
							
							
							
							
							
							
 
			