Skip to content
  • 最新
  • 版块
  • 东岳流体
  • 随机看[请狂点我]
皮肤
  • Light
  • Cerulean
  • Cosmo
  • Flatly
  • Journal
  • Litera
  • Lumen
  • Lux
  • Materia
  • Minty
  • Morph
  • Pulse
  • Sandstone
  • Simplex
  • Sketchy
  • Spacelab
  • United
  • Yeti
  • Zephyr
  • Dark
  • Cyborg
  • Darkly
  • Quartz
  • Slate
  • Solar
  • Superhero
  • Vapor

  • 默认(不使用皮肤)
  • 不使用皮肤
折叠
CFD中文网

CFD中文网

  1. CFD中文网
  2. Algorithm
  3. 多变量分布矩

多变量分布矩

已定时 已固定 已锁定 已移动 Algorithm
1 帖子 1 发布者 1.4k 浏览
  • 从旧到新
  • 从新到旧
  • 最多赞同
回复
  • 在新帖中回复
登录后回复
此主题已被删除。只有拥有主题管理权限的用户可以查看。
  • 李东岳李 在线
    李东岳李 在线
    李东岳 管理员
    写于 最后由 李东岳 编辑
    #1

    二变量高斯分布:
    \begin{equation}
    f(u,v)=\frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}\exp\left(-\frac{1}{2(1-\rho^2)}\left[\frac{(u-\mu_1)^2}{\sigma_1^2}-\frac{2\rho(u-\mu_1)(v-\mu_2)}{\sigma_1\sigma_2}+\frac{(v-\mu_2)^2}{\sigma_2^2}\right]\right)
    \end{equation}
    MGF为:
    \begin{equation}
    m_{i,j}=\exp\left(i\mu_1+j\mu_2+0.5(\sigma_1^2i^2+2\rho\sigma_1\sigma_2ij+\sigma_2^2j^2)\right)
    \end{equation}
    纯矩计算方法为
    \begin{equation}
    \begin{split}
    m_{0,0}&=1\\
    m_{1,0}&=\mu\\
    m_{2,0}&=\mu^2+\sigma^2\\
    m_{3,0}&=\mu^3+3\mu\sigma^2\\
    \end{split}
    \end{equation}
    假设$\mu_1=10,\mu_2=20,\sigma_1=\sigma_2=2,\rho=0.5$,有纯矩:
    \begin{split}
    m_{0,0}&=1\\
    m_{1,0}&=10\\
    m_{2,0}&=104\\
    m_{3,0}&=1120\\
    m_{0,1}&=20\\
    m_{0,2}&=404\\
    m_{0,3}&=8240\\
    \end{split}
    同时有混合矩
    \begin{equation}
    m_{i,j}=\exp\left(36\right)
    \end{equation}
    不行,混合矩计算方法不对

    http://dyfluid.com/index.html
    需要帮助debug算例的看这个 https://cfd-china.com/topic/8018

    1 条回复 最后回复

  • 登录

  • 登录或注册以进行搜索。
  • 第一个帖子
    最后一个帖子
0
  • 最新
  • 版块
  • 东岳流体
  • 随机看[请狂点我]