entropy function的一个问题
- 
							
							
							
							
							
							
$\epsilon \rightarrow 0$ 并不是$\epsilon = 0$,否则不会有 ...if $u$ is smooth at $x_1$ and $x_2$...。在粘度趋向于很小的时候,不连续变成具备一定厚度的光滑解,同样承认有厚度的激波。所以
 $$
 \epsilon\int_\Omega\frac{\p}{\p u}\left(\frac{\p \eta}{\p u}\right)\left(\frac{\p u}{\p x}\right)^2\rd x\rd t \geq 0
 $$
 另外,
 \begin{equation}
 \int_{x_2}^{x_1}\left(\epsilon(\eta_q q_x)_x\rd x -\epsilon\eta(\eta_q)_q q_x^2\right)\rd x=\epsilon\left(\eta_q q_x|_{x=x_1}-\eta_q q_x|_{x=x_2}\right)-\epsilon\eta(\eta_q)_q q_x^2\Delta x
 \end{equation}
 考虑一个非常小的$\epsilon=1e-10$,在控制体内$\epsilon\left(\eta_q q_x|_{x=x_1}-\eta_q q_x|_{x=x_2}\right)\rightarrow 0$,$\epsilon\eta(\eta_q)_q q_x^2\Delta x$还是大于0.
 
			
