怎么编写法向二阶梯度为0的边界条件
-
在计算中需要用到连续性边界条件,即法向二阶梯度为0。在常用的边界条件中能看到gradientInternalCoeffs()和gradientBoundaryCoeffs(),应该能够通过将这个一阶梯度变为二阶梯度来实现这个边界条件,但是不知道这个函数在哪定义?或者有没有其他的实现这个边界的方法?谢谢
-
法向二阶梯度为0
这不就是法向一阶梯度为固定值么?试试
fixedGradient
边界条件?已经有了。 -
@李东岳 并不是一阶为固定值啊,因为在每个网格上是定梯度,但是在整个边界上并不是所有网格都是相同的梯度。
-
嗯,好像是。好吧,我们缕一缕。
考虑下面这个方程:
\begin{equation}
\frac{\rd}{\rd x}\left(\frac{\rd T}{\rd x}\right)=0
\end{equation}
离散后有:
\begin{equation}
\left(A\frac{\rd T}{\rd x}\right)_e-\left(A\frac{\rd T}{\rd x}\right)_p=0
\end{equation}
考虑边界点$p$,如果是fixedGradient
,那么就是
\begin{equation}
\left(A\frac{\rd T}{\rd x}\right)_p=A*\mathrm{someValue}
\end{equation}
如果是二阶fixedGradient
,那么就是
\begin{equation}
\left(A\frac{\rd T}{\rd x}\right)_p=A*\mathrm{someValueSec}
\end{equation}
其中$\mathrm{someValue}$ (fixedValue
)在所有边界面初都一样,$\mathrm{someValueSec}$在每个边界面上都不一样,是这样的吧? -
@李东岳 根据方程来看,是这样的。从物理上可以认为是一个内边界。
-
@李东岳 您认为如果在边界周围将网格密度增大,然后使用zeroGradient边界条件能近似看成连续性边界吗?
-
在每个网格上是定梯度
你可以试试修改
fixedGradient
边界条件,这里面有一个gradient_
成员,默认是均一的需要用户给定,按照你的定义,好像是应该把这个成员设置为和网格边界毗连网格单元的定梯度。
论坛登录问题反馈可联系 li.dy@dyfluid.com