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Outline

This book gives an introduction to the basic mathematics used in the field of computational fluid

dynamics. After presenting the mathematic aspects, all conservation equations are derived using

a finite volume element, dV . At the beginning the derivation of the mass and momentum equation

are described. Subsequently, all kinds of energy equation are discussed and presented namely the

kinetic energy, internal energy, total energy and the enthalpy equation. Based on the nature of

the equations, the general governing equation is introduced afterwards and it is demonstrated how

to use the general conservation equation in order to derive other ones.

The following chapters discuss the definition of the shear-rate tensor τ for Newtonian fluids.

After that a discussion between the analogy of the Cauchy stress tensor σ, the shear-rate tensor

τ and the pressure p is given. All equations are summed up with a one page summary at the end.

Based on the fact that engineering applications are mostly turbulent, the Reynolds-Averaging

methods are presented and explained. Subsequently the incompressible equations are derived and

finally the closure problem is discussed in detail. Here, the Reynolds-Stress equation — which is

fully derived in the appendix — and the analogy to the Cauchy stress tensor is shown. To close

the subject of turbulent flows, the eddy-viscosity theory is introduced and the equation for the

turbulent kinetic energy k and dissipation ε are deducted. The topic ends with a brief description

about the derivation for the compressible Navier-Stokes-Equations equations and its difficulties

and validity.

The last chapters of the book are related to the detailed explanation of the implementation of

the shear-rate tensor calculation in OpenFOAMr. During the investigation into the C++ code,

the mathematical equations are given and a few words about the numerical stabilization is said.

Finally, a more general discussion of the different pressure-momentum coupling algorithms is

given. Subsequently, the PIMPLE-algorithm is explained while considering an OpenFOAMr case.

The last chapter is related to OpenFOAMr beginners which are seeking for tutorials and some

other useful information and websites.
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Chapter 1

Basic Mathematics

In the field of computational fluid dynamics the essential point is to understand the equations and

the mathematics. This knowledge is required if one is going to implement, reorder or manipulate

equations within a software or toolbox. There are a lot of ways to represent equations and thus

a brief collection of the most essential mathematics are given in this chapter. The beauty of

mathematics are also described in Jasak [1996], Dantzig and Rappaz [2009], Greenshields [2015]

and Moukalled et al. [2015].

In the field of numerical simulations we are dealing with tensors Tn of rank n. A tensor

stands for any kind of field. A field can be a scalar, a vector or the classical known tensor that

represents a matrix (normally a 3 by 3 matrix) and is of rank two. To keep things clear we use

the following definition which are similar to Greenshields [2015]:

Zero rank tensor T0 := scalar a

First rank tensor T1 := vector a

Second rank tensor T2 := tensor T (matrix of 3x3)

Third rank tensor T3 := tensor Tijk

If the rank of a tensor is larger than zero, the tensor is always written in bold symbols/letters.

Tensors which have a rank larger than two are not needed in most of the numerics presented in

this book. The only exception is the derivation of the Reynolds-Stress equation.

1.1 Basic Rules of Derivatives

The governing conservation equations in fluid dynamics are partial differential equations. Based

on that, a brief summary of the rules that are needed to manipulating and analyzing the equations

are given now.

Considering the sum of two quantities φ and χ that are derived respectively to τ , we can split

the derivative:
∂(φ+ χ)

∂τ
=
∂φ

∂τ
+
∂χ

∂τ
. (1.1)

If we have the derivative of the product of the two quantities, it is possible to use the product

rule to split the term. In other words, we have to keep one quantity constant while deriving the

1



2 Basic Mathematics

other one:
∂φχ

∂τ
= χ

∂φ

∂τ
+ φ

∂χ

∂τ
. (1.2)

A constant quantity C can be taken inside or outside of a derivative without any constrain:

∂ C φχ

∂τ
= C

∂φχ

∂τ
. (1.3)

1.2 Einsteins Summation Convention

For vector and tensor equations there are several options of notations. The longest but clearest

notation is the Cartesian one. This notation can be abbreviated — if the equation contains several

similar terms which are summed up — by applying the Einsteins summation convention. Assuming

the sum of the following derivatives of the arbitrary variable φi (such as the mass conservation)

in x, y and z direction, the Cartesian form is written as:

∂φx
∂x

+
∂φy
∂y

+
∂φz
∂z

.

To simplify this equation, the Einsteins summation convention can be applied. Commonly, the

summation sign
∑

is neglected to keep things clear and short:∑
i

∂φi
∂xi

=
∂φi
∂xi

i = x, y, z . (1.4)

A more complex example that demonstrates the advantage of the Einsteins summation convention

is the convective term of the momentum equation (it is not necessary to know the meaning of this

terms right now). Due to the fact that the momentum is a vector quantity, the three single terms

of each direction are given as:
∂uxux
∂x

+
∂uyux
∂y

+
∂uzux
∂z

,

∂uxuy
∂x

+
∂uyuy
∂y

+
∂uzuy
∂z

,

∂uxuz
∂x

+
∂uyuz
∂y

+
∂uzuz
∂z

.

Applying the Einsteins convention the result is as follow:∑
i

∂uiuj
∂xi

=
∂uiuj
∂xi

i = x, y, z; j = x, y, z . (1.5)

The Einsteins summation convention is widely used in literatures. Hence, it is essential to know

the meaning and how it is applied.

1.3 General Tensor Mathematics

A common and easy way to deal with equations is to use the vector notation instead of the Ein-

steins summation convention. The vector notation requires knowledge about special mathematics.

Therefore, a brief description of different operations which are applied to scalars, vectors and

tensors are given now. For that purpose the arbitrary quantities are used: a scalar φ, two vectors
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a and b and a tensor T:

a =

axay
az

 =

a1

a2

a3

 , b =

bxby
bz

 =

b1b2
b3

 ,

T =

Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz

 =

T11 T12 T13

T21 T22 T23

T31 T32 T33

 .

Depending on the operation of interest, one uses either the numeric indices (1, 2, 3) or the space

components (x, y, z). Furthermore, the unit vectors ei and the identity matrix I has to be defined:

e1 = ex =

1

0

0

 , e2 = ey =

0

1

0

 , e3 = ez =

0

0

1

 , I =

1 0 0

0 1 0

0 0 1

 .

Simple Operations

• The multiplication of a scalar φ by a vector b results in a vector and is commutative and

associative. This is also valid for the multiplication of a scalar φ and a tensor T:

φb =

φbxφby

φbz

 , φT =

φTxx φTxy φTxz

φTyx φTyy φTyz

φTzx φTzy φTzz

 . (1.6)

The Inner Product

• The inner product of two vectors a and b produces a scalar φ and is commutative. This

operation is indicated by the dot sign •:

φ = a • b = aTb =

3∑
i=1

aibi . (1.7)

• The inner product of a vector a and a tensor T produces a vector b and is non-commutative

if the tensor is non-symmetric:

b = T • a =
3∑
i=1

3∑
j=1

Tijajei =

T11a1 + T12a2 + T13a3

T21a1 + T22a2 + T23a3

T31a1 + T32a2 + T33a3

 . (1.8)

b = a •T = TT • a =

3∑
i=1

3∑
j=1

ajTjiei =

a1T11 + a2T21 + a3T31

a1T12 + a2T22 + a3T32

a1T13 + a2T23 + a3T33

 , (1.9)

A symmetric tensor is given, if Tij = Tji and hence, a •T = T • a.

The Double Inner Product

• The double inner product of two tensors T and S results in a scalar φ and is commutative.

It will be indicated by the colon : sign:
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φ = T: S =

3∑
i=1

3∑
j=1

TijSij = T11S11 + T12S12 + T13S13 + T21S21

+ T22S22 + T23S23 + T31S31 + T32S32 + T33S33 . (1.10)

The Outer Product

• The outer product of two vectors a and b, also known as dyadic product, results in a tensor,

is non-commutative and is expressed by the dyadic sign ⊗:

T = a⊗ b = abT =

axbx axby axbz

aybx ayby aybz

azbx azby azbz

 . (1.11)

In most of the literatures the dyadic sign ⊗ is neglected for brevity as shown below:

ab . (1.12)

Keep in mind, that both variants are used in literature whereas the last one is more common

but the first one is more clear. In this book we use the definition of equation (1.11), to be more

consistent with the mathematics.

Differential Operators

In vector notation, the spatial derivatives of a variable (scalar, vector or tensor) is made using the

Nabla operator ∇. It contains the three space derivatives of x, y and z in a Cartesian coordinate

system:

∇ =


∂
∂x
∂
∂y
∂
∂z

 =


∂
∂x1
∂
∂x2
∂
∂x3

 .

Gradient Operator

• The gradient of a scalar φ results in a vector a:

gradφ = ∇φ =


∂φ
∂x
∂φ
∂y
∂φ
∂z

 . (1.13)

• The gradient of a vector b results in a tensor T:

grad b = ∇⊗ b =


∂
∂x
bx

∂
∂x
by

∂
∂x
bz

∂
∂y
bx

∂
∂y
by

∂
∂y
bz

∂
∂z
bx

∂
∂z
by

∂
∂z
bz

 . (1.14)

We see that this operation is actually the outer product of the Nabla operator (special vector)

and an arbitrary vector b. Hence, it is commonly written as:

∇b . (1.15)
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In this book we use the first notation (with the dyadic sign) to be more consistent within the

mathematics.

Note: The gradient operation increase the rank of the tensor by one and hence, we can apply

it to any tensor field.

Divergence Operator

• The divergence of a vector b results in a scalar φ and is expressed by the combination of the

Nabla operator and the dot sign, ∇•:

div b = ∇ • b =

3∑
i=1

∂

∂xi
bi =

∂b1
∂x1

+
∂b2
∂x2

+
∂b3
∂x3

. (1.16)

• The divergence of a tensor T results in a vector b:

div T = ∇ •T =

3∑
i=1

3∑
j=1

∂

∂xj
Tjiei =


∂T11
∂x1

+ ∂T21
∂x2

+ ∂T31
∂x3

∂T12
∂x1

+ ∂T22
∂x2

+ ∂T32
∂x3

∂T13
∂x1

+ ∂T23
∂x2

+ ∂T33
∂x3

 . (1.17)

Note: The divergence operation decrease the rank of the tensor by one. Hence, it does not

make sense to apply this operator on a scalar.

The Product Rule within the Divergence Operator

If we have a product within a divergence term, we can split the term using the product rule. Based

on the tensor ranks inside the divergence, we have to apply different rules, which are given now.

• The divergence of the product of a vector a and a scalar φ can be split as follows and results

in a scalar:

∇ • (aφ) = a • ∇φ︸ ︷︷ ︸
Eqn. (1.7)

+ φ∇ • a︸ ︷︷ ︸
simple multiplication

. (1.18)

• The divergence of the outer product (dyadic product) of two vectors a and b can be split as

follows and results in a vector:

∇ • (a⊗ b) = a • ∇ ⊗ b︸ ︷︷ ︸
Eqn. (1.9)

+ b∇ • a︸ ︷︷ ︸
Eqn. (1.6)

. (1.19)

• The divergence of the inner product of a tensor T and a vector b can be split as follows and

results in a scalar:

∇ • (T • b) = T: ∇⊗ b︸ ︷︷ ︸
Eqn. (1.10)

+ b • ∇ •T︸ ︷︷ ︸
Eqn. (1.7)

. (1.20)

If one thinks that the product rule for the inner product of two vectors is missing, think about the

result of the inner product of the two vectors and which tensor rank the result will have. After

that, ask yourself how the divergence operator will change the rank.
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1.3.1 The Total Derivative

The definition of the total derivative of an arbitrary quantity φ – in the field of fluid dynamics –

is defined as:
Dφ

Dt
=
∂φ

∂t
+ U • ∇φ︸ ︷︷ ︸

inner product

, (1.21)

where U represents the velocity vector. The last term in equation (1.21) denotes the inner prod-

uct. Depending on the quantity φ (scalar, vector, tensor, and so on), the correct mathematical

expression for the second term on the right hand side (RHS) has to be applied. Example given:

• If φ is a scalar, we have to use equation (1.7),

• If φ is a vector, we have to use equation (1.9).

Short Outline for the Total Derivative

The total derivative is used to represent non-conserved equations. In other words, each conserved

equation can be changed into a non-conserved equation using the continuity equation. In literature

people start to derive equations using the total derivative and using the continuity equation to

extend the non-conservative equation to the conserved one. The better way would be to derive

first the conserved equation and then using the continuity equation to get the non-conserved form.

Why? It is easier to understand.

The difference between both equations is the frame of reference. In the conserved representa-

tion, we have the Euler expression, for non-conserved equations it is the Lagrange expression.

If you have literature that start with the non-conservation equations, this would help to un-

derstand the following extension (at the moment it is not necessary to understand this equations):

• Incompressible:

Dφ

Dt
=
∂φ

∂t
+ U • ∇φ︸ ︷︷ ︸

non−conserved

+ φ (∇ • (U))︸ ︷︷ ︸
continuity = 0

. (1.22)

• Compressible:

ρ
Dφ

Dt
= ρ

[
∂φ

∂t
+ U • ∇φ

]
︸ ︷︷ ︸

non−conserved

+ φ

(
∂ρ

∂t
+∇ • (ρU)

)
︸ ︷︷ ︸

continuity = 0

. (1.23)

The reason we multiply the continuity equation (second term on the right hand side) by the quan-

tity φ comes from the product rule, that is applied to the convective term. After the momentum

equation is derived and the conservative form is transformed into the non-conserved one, this will

get clear.

1.3.2 Matrix Algebra, Deviatoric and Hydrostatic Part

In the field of numerical simulations we are dealing with quantities that are represented by matrices

like the stress tensor. Therefore, some basic mathematical expressions and manipulations are

introduced now.
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Each matrix A can be split into a deviatoric Adev and hydrostatic Ahyd part:

A = Ahyd + Adev . (1.24)

The hydrostatic part of the matrix can be expressed as scalar or matrix and is defined by using

the trace operator. If one wants to calculate the scalar, we use the following definition:

Ahyd =
1

3
tr(A) =

1

3

n∑
i=1

(aii) . (1.25)

The operator tr denotes the trace operator and is applied on the matrix. This operator is simply

the sum of the diagonal elements. However, the correct mathematical expression for the hydrostatic

part of the matrix A is given by:

Ahyd = AhydI =
1

3
tr(A)I =

1

3

n∑
i=1

(aii)I . (1.26)

The deviatoric part Adev is given as:

Adev = A−Ahyd = A− 1

3
tr(A)I . (1.27)

Note: The deviatoric part of a matrix is traceless. Hence, tr(Adev) = 0; The trace operator is

zero not the diagonal elements.

1.3.3 The Gauss Theorem

To transform any equation from the differential form to the integral one (or vice versa), it is

necessary to know the Gauss theorem. This theorem allows us to establish a relation between

the fluxes through the surface of an arbitrary volume element and the divergence operator on the

volume element : ∮
a · ndS =

∫
(∇ • a)dV . (1.28)

In equation (1.28), n represents the surface normal vector pointing outwards, dS the integration

with respect to the surface and dV the integration with respect to the volume.

Note: The small dot · denotes the inner product of two vectors (1.7). In the following book, we

use the small dot in all integrals to sign that we calculate the inner product of a vector a and the

surface normal vector n. Keep in mind that the small dot expresses exact the same mathematical

expression as the bullet.
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Chapter 2

Derivations of the Governing Equations

The following chapter demonstrates how to derive the continuity, momentum, total energy, me-

chanical (kinetic) energy, thermo (internal) energy and enthalpy equation using a small volume

element dV . The equations are derived using the Cartesian coordinate system. A complete sum-

mary of all equations is given on page 41. The structure of this chapter is (mainly) as follows:

• Express the phenomena that act on the volume element using finite differences,

• Transform the finite difference equation to a partial differential equation,

• Manipulate the equation to get the common form,

• Transform the Cartesian notation into the vector notation,

• Proof that the vector notation results in the Cartesian notation,

• Transform the equation into the integral and non-conserved form.

The main references that are used within this chapter are Greenshields [2015], Dantzig and

Rappaz [2009], Jasak [1996], Ferziger and Perić [2008], Bird et al. [1960], Versteeg and Malalasekera

[1995], Schwarze [2013] and Moukalled et al. [2015].

2.1 The Continuity Equation

In the following section the derivation of the continuity equation is presented. The equation itself

describes the mass balance of an arbitrary volume element dV .

Consider the mass flow through a small control volume element dV , depicted in figure 2.1,

using the constrain that mass is not transformed into energy or vice versa, a mass balance has to

be fulfilled for the volume element. That means, that the mass flow that enters and leaves the

volume element through its surfaces has to be equal. Furthermore, we have to take the rate of

mass accumulation into account:[
rate of mass

accumulation

]
=

[
rate of mass

entering the volume

]
−

[
rate of mass

leaving the volume

]
. (2.1)

9
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To make things clearer, we analyze figure 2.1. It is obvious that the mass is transported through

the surface by the velocity. This transport phenomenon is called convection or sometimes named

advection — normally if we are talking about the fluid itself, we refer to convection; however, if

a species or any other quantity is transported due to convection, it is said to be advected — and

happens for all three space directions x (ux), y (uy) and z (uz). Additionally a mass change inside

the element can occur due to compression or expansion phenomena; that means the density will

change.

Having a closer look to figure 2.1, we observe that the velocity vectors are normal to the faces.

The rate of mass that enters or leaves the volume element through the surface is called mass flux

and is simply the density times the velocity with respect to the area of the face. For the derivation

of the mass conservation equation we have to build the balance of the fluxes at the surfaces of the

volume element. In other words, everything that is going inside has to go out if we assume that

there is no mass accumulation inside the volume (incompressible). The single terms that describe

the fluxes at the surfaces are given on the right side in figure 2.1.

If we have a compressible fluid, the rate of change for the density ρ is related to the volume,

mass per unit volume, and will only change with respect to time. Therefore, we can write the

rate of change of the density as:

Time Accumulation =
∆ρ

∆t
. (2.2)

Rewriting equation (2.1) by using the mathematical expressions given in figure 2.1 and equation

(2.2), it follows:

∆ρ

∆t
∆x∆y∆z =

(
(ρux)|x − (ρux)|x+∆x

)
∆y∆z

+
(
(ρuy)|y − (ρuy)|y+∆y

)
∆x∆z

+
(
(ρuz)|z − (ρuz)|z+∆z

)
∆x∆y . (2.3)

x

z

y

ux|x ux|x+∆x

∆y

∆z

∆x

•dV

Mass inside x : (ρux)|x∆y∆z

Mass outside x : (ρux)|
x+∆x

∆y∆z

Mass inside y : (ρuy)|y∆x∆z

Mass outside y : (ρuy)|
y+∆y

∆x∆z

Mass inside z : (ρuz)|z∆x∆y

Mass outside z : (ρuz)|
z+∆z

∆x∆y

Figure 2.1: Mass balance in a small volume element dV .
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Dividing the equation by the volume ∆V = ∆x∆y∆z, we get:

∆ρ

∆t
=

(ρux)|x − (ρux)|x+∆x

∆x

+
(ρuy)|y − (ρuy)|y+∆y

∆y

+
(ρuz)|z − (ρuz)|z+∆z

∆z
. (2.4)

Introducing the assumption of an infinitesimal small volume element — which means that we

decrease the distance between the corners of the volume element and therefore ∆ goes to zero:

∆

∆x
−→ lim

∆x→0

∆

∆x
=

∂

∂x
, (2.5)

and also an infinitesimal small time range:

∆

∆t
−→ lim

∆t→0

∆

∆t
=

∂

∂t
, (2.6)

we can transform the finite difference equation to a partial differential equation. For that, we have

to apply equation (2.5) and (2.6) to (2.4). It follows:

(ρux)|x − (ρux)|x+∆x

∆x
=
−∆(ρux)

∆x
−→ − ∂

∂x
(ρux) , (2.7)

(ρuy)|y − (ρuy)|y+∆y

∆y
=
−∆(ρuy)

∆y
−→ − ∂

∂y
(ρuy) , (2.8)

(ρuz)|z − (ρux)|z+∆z

∆z
=
−∆(ρuz)

∆z
−→ − ∂

∂z
(ρuz) , (2.9)

∆ρ

∆t
→ ∂ρ

∂t
, (2.10)

and the general mass conservation (continuity) equation is given by:

∂ρ

∂t
= −

(
∂

∂x
(ρux) +

∂

∂y
(ρuy) +

∂

∂z
(ρuz)

)
. (2.11)

If we use the Nabla-Operator ∇ and the velocity vector U, the equation can be rewritten in vector

notation:
∂ρ

∂t
= −∇ • (ρU) . (2.12)

However, if we focus on incompressible fluids, we could assume that the density is constant and

therefore the quantity ρ can be taken out of the derivatives and we are allowed to divide by ρ. It

is obvious that the time derivative will vanish due to the fact that the density is a constant and

will not change with respect to time. One may also try to explain it in the following way: if we

assume constant density, there is no expansion or compression phenomena and therefore the time

derivative can be canceled to zero. Hence, only the mass flux that enters and/or leaves the volume

element at its surface has to be taken into account.

Remark: In many cases incompressibility means that there is no expansion and/or compres-

sion phenomena. However, the fluid density can still be temperature depended. In such a case we
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have to be careful which mass conservation equation we are using (incompressible or compressible).

In general, if the density is not a constant value, we are not allowed to use the simplified mass

conservation equation (2.13) due to the fact that it is not possible anymore to push the density

out of the derivative.

If the density change is really small, we are allowed to use the simplified mass conservation

equation with limitations. The reason for that is based on numerics and the interaction with the

momentum conservation equation.

For the incompressible case, the density for the fluid is constant and thus we can simplify the

mass conservation equation to:

∇ •U = 0 . (2.13)

For the simple mass conservation equation it is obvious that the vector notation results in the

Cartesian form. Thats why the transformation is not demonstrated here. If you want to check it

ourself, you just need to use equation (1.16).

2.1.1 Integral Form of the Conserved Continuity Equation

For the completeness, the integral form of the mass conservation equation will be given now.

Using the Gauss theorem (1.28), we can transform the divergence term (that acts on the volume)

to a surface integral. The accumulation of density in the element is a simple volume integral.

Furthermore, the volume element itself is not changing with respect to time (fixed finite volume

- the discrete volumes are not changing during the simulation; static meshes). Thus, we end up

with:

Compressible:

∂

∂t

∫
ρdV = −

∮
ρU · ndS . (2.14)

Incompressible: ∮
U · ndS = 0 . (2.15)

The surface integral means nothing more than taking the balance of the fluxes on the surfaces

of the volume element; what is going in and out. Depending on the shape of the volume, we

have to evaluate more or less faces. The integral form of the continuity equation leads to the so

called finite volume method (FVM). This method is conservative and we can apply this method to

each arbitrary volume (hexaeder, tetraeder, prisms, wedges and so on) which makes this method

popular and flexible. However, unstructured grids limit the numerical schemes to second order

precision in general.

2.1.2 Continuity Equation and the Total Derivative

Using the total derivative formulation (1.21), we are able to rewrite the continuity equation (2.12)

by applying the product rule (1.18) to the divergence term:

∇ • (ρU) = U • ∇ρ+ ρ∇ •U . (2.16)
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Substituting this expression into equation (2.12), we get:

∂ρ

∂t
= −U • ∇ρ− ρ∇ •U . (2.17)

Finally, we put all terms to the LHS:

∂ρ

∂t
+ U • ∇ρ︸ ︷︷ ︸

Total derivative

+ρ∇ •U = 0 . (2.18)

The result is:
Dρ

Dt
+ ρ∇ •U = 0 . (2.19)

This equation is not common but could be found in Anderson [1995].

OpenFOAMr

In OpenFOAMr we are using this equation (integral one) to calculate the fluxes at the faces of

each cell. The flux field is named phi and is created by the call of one of the two header files in

each solver:

• createPhi.H

• compressibleCreatePhi.H

Due to the fact that we store the density and the velocity at the cell center, we need to interpolate

the values to the face centers. This calculation is done by calling the function interpolate(rho*U)

and will simply calculate the product of the density and the velocity vector at the cell center and

interpolate it to the face center by including the neighbor cell information with respect to the face

we are going to evaluate. To get the fluxes, the interpolated values are then multiplied by the

surface normal vector (area) using the inner product of two vectors denoted by the ampersand

sign & in OpenFOAMr.
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2.2 The Conserved Momentum Equation

For the derivation of the conserved momentum equation, we are going to use the volume element

dV again. The main difference in the momentum equation compared to the mass conservation

equation is, that we have to consider more phenomena that can transport and change the momen-

tum inside the volume element and that this quantity is not a scalar; it is a vector (velocity in

x, y and z direction).

Generally we are allowed to say that the momentum can be transported and changed by the

following aspects:
rate of

momentum

accumulation

 =


rate of

momentum

entering the

volume

−


rate of

momentum

leaving the

volume

+


sum of forces

that act on

the volume

 . (2.20)

Figure 2.2 shows the volume element like in 2.1 but now showing another transport phenomenon

that acts only on the surfaces. The phenomenon transports the momentum based on molecular

effects. This molecular transport acts normal and tangential to the surface and is an outcome or

property of the vector quantity.

Other phenomena that change the momentum are given as a sum of forces acting on the volume

element dV . For example we could have the gravitational acceleration and the pressure force.

On the right side of figure 2.2, the terms that transport the x-component of the momentum

through the surfaces by the molecular transport effect are given.

Convection of the Momentum in x-Direction

The x-component of the momentum is transported by convection into the volume element through

all six faces that is also an outcome related to the vector quantity. Therefore, the convection of

x

z

y

τxx|x τxx|x+∆x

τzx|z

τzx|z+∆z

τyx|y+∆y

τyx|y

∆y

∆z

∆x

into face |x : τxx|x∆y∆z

out of face |x : τxx|x+∆x
∆y∆z

into face |y : τyx|y∆x∆z

out of face |y : τyx|y+∆y
∆x∆z

into face |z : τzx|z∆x∆y

out of face |z : τzx|z+∆z
∆x∆y

Figure 2.2: Molecular transport of the momentum in x-direction in an arbitrary small volume
element dV .
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the momentum can be derived similarly to the convective transport of the mass. But now we have

to take care about the vector quantity. Thus, the momentum in x-direction enters the volume

at the face |x and leaves the volume through the face |x+∆x ; identical to the continuity equation.

But now it is also possible that the x-component of the momentum is transported through the

faces in y and z direction. Hence, we can write the transport of the momentum due to convection;

it is simply the velocity in x-direction multiplied by the flux through the face we are looking at

(Newtons second law):

into face |x : (ρux)ux|x ,

out of face |x+∆x : (ρux)ux|x+∆x ,

into face |y : (ρuy)ux|y ,

out of face |y+∆y : (ρuy)ux|y+∆y ,

into face |z : (ρuz)ux|z ,

out of face |z+∆z : (ρuz)ux|z+∆z .

After combining the terms and using the face areas, we get:(
(ρux)ux|x − (ρux)ux|x+∆x

)
∆y∆z

+
(
(ρuy)ux|y − (ρuy)ux|y+∆y

)
∆x∆z

+
(
(ρuz)ux|z − (ρuz)ux|z+∆z

)
∆x∆y .

Molecular Transport of the Momentum in x-Direction

Additionally, the x-component of the momentum is transported due to the molecular phenomenon

as demonstrated in figure 2.2. The effect is based on velocity differences (velocity gradients). As

we can see in figure 2.2, we have different kind of terms: the normal component τxx and the

tangential components τyx, τzx. Therefore, the molecular transport of the x-momentum through

the surfaces can be written as: (
τxx|x − τxx|x+∆x

)
∆y∆z

+
(
τyx|y − τyx|y+∆y

)
∆x∆z

+
(
τzx|z − τzx|z+∆z

)
∆x∆y .

These terms represent additional fluxes of momentum through the surface. We consider these

fluxes as stresses. τxx denotes the stress perpendicular to the direction we are looking at (here

face |x and face |x+∆x) and τyx, τzx denote the x-directed tangential stresses which act on the

faces with respect to the indices. All these stresses are known as shear stresses due to the fact

that they are generated with respect to velocity gradients that introduce shearing.

Additional Forces that Influence the Momentum

In most problems, the only important forces that influence the momentum are the pressure and

gravity force. The pressure acts on the surface whereat the gravitational force acts on the volume

of the element. Hence, we are able to derive the change of the x-momentum based on the pressure
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and gravitational force: (
p|x − p|x+∆x

)
∆y∆z + ρgx∆x∆y∆z .

Conserved Momentum Equation

After we have all terms, we can reconstruct equation (2.20) with the mathematic expressions. Of

course the accumulation of the momentum inside an arbitrary volume element is given by:

∆

∆t
ρux∆x∆y∆z .

Thus, for the momentum in x-direction we can write:

∆

∆t
ρux∆x∆y∆z =

(
(ρux)ux|x − (ρux)ux|x+∆x

)
∆y∆z

+
(
(ρuy)ux|y − (ρuy)ux|y+∆y

)
∆x∆z

+
(
(ρuz)ux|z − (ρuz)ux|z+∆z

)
∆x∆y

+
(
τxx|x − τxx|x+∆x

)
∆y∆z

+
(
τyx|y − τyx|y+∆y

)
∆x∆z

+
(
τzx|z − τzx|z+∆z

)
∆x∆y

+
(
p|x − p|x+∆x

)
∆y∆z

+ρgx∆x∆y∆z . (2.21)

Now, by dividing the whole equation by the volume dV , it follows:

∆

∆t
ρux =

(ρux)ux|x − (ρux)ux|x+∆x

∆x
+

(ρuy)ux|y − (ρuy)ux|y+∆y

∆y

+
(ρuz)ux|z − (ρuz)ux|z+∆z

∆z
+
τxx|x − τxx|x+∆x

∆x
+
τyx|y − τyx|y+∆y

∆y

+
τzx|z − τzx|z+∆z

∆z
+
p|x − p|x+∆x

∆x
+ ρgx . (2.22)

Finally we use the assumption of an infinitesimal small volume element (2.5) and time range (2.6)

to rewrite the x-component of the momentum equation above. The other two space directions can

be derived in the same way and is not shown in details.

The x-component of the momentum is then written as:

∂

∂t
ρux =−

(
∂

∂x
ρuxux +

∂

∂y
ρuyux +

∂

∂z
ρuzux

)
−
(
∂

∂x
τxx +

∂

∂y
τyx +

∂

∂z
τzx

)
− ∂p

∂x
+ ρgx

. (2.23)

For the y-component of the momentum, we get:

∂

∂t
ρuy =−

(
∂

∂x
ρuxuy +

∂

∂y
ρuyuy +

∂

∂z
ρuzuy

)
−
(
∂

∂x
τxy +

∂

∂y
τyy +

∂

∂z
τzy

)
− ∂p

∂y
+ ρgy

, (2.24)
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and for the z-component we achieve:

∂

∂t
ρuz =−

(
∂

∂x
ρuxuz +

∂

∂y
ρuyuz +

∂

∂z
ρuzuz

)
−
(
∂

∂x
τxz +

∂

∂y
τyz +

∂

∂z
τzz

)
− ∂p

∂z
+ ρgz

. (2.25)

Introducing the gravitational acceleration vector g, the gradient of the pressure ∇p and the shear-

rate tensor τ that are defined as

∇p =


∂p
∂x
∂p
∂y
∂p
∂z

 , τ =

τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

 , g =

gxgy
gz

 ,

we are able to write the momentum equation in vector form. Note, that the negative sign of the

shear-rate tensor will change, if we introduce the definition of the shear-rate tensor τ later on.

∂

∂t
ρU = −∇ • (ρU⊗U)−∇ • τ −∇p+ ρg (2.26)

2.2.1 The Proof of the Transformation

The following section will proof that equation (2.26) results in (2.23), (2.24) and (2.25). For

clearance, we will focus on each term separately. Starting with the first term, the time derivative,

we get:

∂

∂t
ρU =


∂
∂t
ρux

∂
∂t
ρuy

∂
∂t
ρuz

 !
=


∂
∂t
ρux of x−momentum

∂
∂t
ρuy of y −momentum

∂
∂t
ρuz of z −momentum

. (2.27)

As we see, the time derivative term results in the same three terms that we have in the Cartesian

formulation. The second term embrace the transport of momentum due to convection by the flux

ρU. To evaluate the term, we need the mathematics (1.11) and (1.17):

−∇ • (ρU⊗U) = −∇ •

ρ
uxuy
uz

⊗
uxuy
uz


 = −∇ •

ρ
uxux uxuy uxuz

uyux uyuy uyuz

uzux uzuy uzuz




= −∇ •

ρuxux ρuxuy ρuxuz

ρuyux ρuyuy ρuyuz

ρuzux ρuzuy ρuzuz

 = −


∂
∂x
∂
∂y
∂
∂z

 •
ρuxux ρuxuy ρuxuz

ρuyux ρuyuy ρuyuz

ρuzux ρuzuy ρuzuz



= −


∂
∂x
ρuxux + ∂

∂y
ρuyux + ∂

∂z
ρuzux

∂
∂x
ρuxuy + ∂

∂y
ρuyuy + ∂

∂z
ρuzuy

∂
∂x
ρuxuz + ∂

∂y
ρuyuz + ∂

∂z
ρuzuz

 !
=


−
(
∂
∂x
ρuxux + ∂

∂y
ρuyux + ∂

∂z
ρuzux

)
−
(
∂
∂x
ρuxuy + ∂

∂y
ρuyuy + ∂

∂z
ρuzuy

)
−
(
∂
∂x
ρuxuz + ∂

∂y
ρuyuz + ∂

∂z
ρuzuz

) .

Again, it can be seen that the terms are equal and we end up with the same set of equations. Now

we investigate into the third term that describes shearing due to the gradients of the velocities.
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Using the convention (1.17) for the shear-rate tensor τ , we get:

−∇ • τ = −∇ •

τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

 =

−


∂
∂x
τxx + ∂

∂y
τyx + ∂

∂z
τzx

∂
∂x
τxy + ∂

∂y
τyy + ∂

∂z
τzy

∂
∂x
τxz + ∂

∂y
τyz + ∂

∂z
τzz

 !
=


−
(
∂
∂x
τxx + ∂

∂y
τyx + ∂

∂z
τzx
)

of x momentum

−
(
∂
∂x
τxy + ∂

∂y
τyy + ∂

∂z
τzy
)

of y momentum

−
(
∂
∂x
τxz + ∂

∂y
τyz + ∂

∂z
τzz
)

of z momentum

.

It was already clear, that we end up with the same terms. At last the pressure and gravitational

acceleration term is analyzed. For the pressure term we need the definition of equation (1.13) and

for the gravitational term equation (1.6). It follows:

−∇p = −


∂
∂x
∂
∂y
∂
∂z

 p = −


∂p
∂x
∂p
∂y
∂p
∂z

 !
=


− ∂p
∂x

of x momentum

− ∂p
∂y

of y momentum

− ∂p
∂z

of z momentum

,

ρg = ρ

gxgy
gz

 =

ρgxρgy

ρgz

 !
=


ρgx of x momentum

ρgy of y momentum

ρgz of z momentum

.

As we proofed now, the vector form ends up in the Cartesian form.

If we want to solve this equation now, it is necessary to know the shear-rate tensor τ . We

are going to investigate into that quantity in chapter 5. Further representations of the momen-

tum equation can be found in chapter 8. The implementation of the momentum equation in

OpenFOAMr will be discussed in chapter 10; especially the treatment of the diffusion term. Keep

in mind that equation (2.26) includes only the gravitational acceleration and pressure force. If

there are further phenomena (forces) influencing the momentum equation, these terms have to be

taken into account.

2.2.2 Integral Form of the Conserved Momentum Equation

The integral form of the momentum equation (2.26) can be obtained by using the Gauss theorem

(1.28). It follows:

∂

∂t

∫
ρUdV = −

∮
(ρU⊗U) · ndS −

∮
τ · ndS −

∮
pI · ndS +

∫
ρgdV . (2.28)

2.2.3 Non-Conserved Momentum Equation

We can manipulate the conserved momentum equation with the continuity equation (2.12) to

get a non-conservative form. For that, we consider equation (2.26) first and split the time and
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convection term by using the product rule. The time derivative becomes:

∂

∂t
ρU = ρ

∂

∂t
U + U

∂

∂t
ρ , (2.29)

and the convection term can be rewritten using equation (1.19). It follows:

∇ • (ρU⊗U) = ρU • ∇ ⊗U︸ ︷︷ ︸
gradient︸ ︷︷ ︸

inner product

+U∇ • (ρU)︸ ︷︷ ︸
divergence

. (2.30)

Replacing these terms into equation (2.26) and put the convection terms to the LHS, we end up

with:

ρ
∂

∂t
U + U

∂

∂t
ρ+ ρU • ∇ ⊗U + U∇ • (ρU) = . . . (2.31)

After analyzing the equation, we see that we can take out ρ and U:

ρ

[
∂

∂t
U + U • ∇ ⊗U

]
+ U

[
�������∂

∂t
ρ+∇ • (ρU)

]
︸ ︷︷ ︸

continuity

= . . . (2.32)

It is clear that the second term is zero due to the continuity equation. Applying the definition of

the total derivative (1.21), we can write the non-conservative form of the momentum equation as:

ρ
DU

Dt
= −∇ • τ −∇p+ ρg (2.33)

Remark: As already mentioned before, the negative sign of the first term on the RHS will vanish

after we introduced the definition of the shear-rate components τii.
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2.3 The Conserved Total Energy Equation

This section will show the derivation of the total energy equation. The total energy includes the

internal (thermal) and kinetic (mechanical) energy. In general, the change of the total energy can

be described in an arbitrary volume element dV by: rate of internal

and kinetic

energy accumulation

 =

 rate of internal

and kinetic energy

entering the volume

−
 rate of internal

and kinetic energy

leaving the volume



+

 net rate of

heat addition by

conduction

−
 net rate of

work done by

system on surroundings

+

 net rate of

additional

heat sources

 .

(2.34)

This is the first law of thermodynamics written for an open and unsteady state system with the

extension of additional heat sources which was also stated by Bird et al. [1960]. The statement is

not complete because no transport of energy can be done due to nuclear, radiative and electro-

magnetic phenomena but as we already mentioned, we assume that energy cannot be transfered

into mass and vice versa.

In the equation above, internal, kinetic and work energy are included and therefore unsteady

behavior is allowed. The kinetic energy (per unit mass) is given by 1
2
ρ|U|2 where |U| denotes

the magnitude of the local velocity. The internal energy e (per unit mass) can be interpreted

as the energy associated with the random translation and internal motion of molecules plus the

energy of interaction between them. Therefore, the internal energy is temperature and density

depended.

The Accumulation of Total Energy during Time

Now we write the above equation explicit for a finite volume element dV . The accumulation in

time is clear (like in the other equations before):

∆x∆y∆z
∂

∂t
(ρe+

1

2
ρ|U|2) . (2.35)

The Convection of Total Energy

To get the net rate of total energy – that enters and leaves the volume element based on the

convection phenomenon –, we simply have to multiply the internal and kinetic energy by the

velocity respectively to the face it acts on (compare figure 2.1):

∆y∆z

[
ux(ρe+

1

2
ρ|U|2)|x − ux(ρe+

1

2
ρ|U|2)|x+∆x

]
+∆x∆z

[
uy(ρe+

1

2
ρ|U|2)|y − uy(ρe+

1

2
ρ|U|2)|y+∆y

]
+∆x∆y

[
uz(ρe+

1

2
ρ|U|2)|z − uz(ρe+

1

2
ρ|U|2)|z+∆z

]
. (2.36)

If we take out the density, we clearly see the mass flux; e.g. ∆y∆zuxρ.
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The Change of Total Energy due to Conduction

The next term that influences the energy is based on the conduction phenomenon. For this we

introduce the heat flux vector q, that is used later on:

∆y∆z [qx|x − qx|x+∆x]

+∆x∆z [qy|y − qy|y+∆y]

+∆x∆y [qz|z − qz|z+∆z] . (2.37)

The quantities qx, qy and qz are the single components of the heat flux vector q.

The Change of Total Energy due to Work against its Surroundings

The work done by the fluid against its surroundings can be split into two parts:

• The work against the volume forces (like gravity),

• The work against the surface forces (like pressure or viscous forces).

Some recall:

• (Work) = (Force) x (Distance in the direction of the force),

• (rate of doing work) = (Force) x (Velocity in the direction of the force).

Hence, the rate of doing work against the components of the gravitational acceleration can be

written as:

− ρ∆x∆y∆z (uxgx + uygy + uzgz) , (2.38)

and the rate of doing work against the pressure p (static pressure) at the faces of the volume

element is:

∆y∆z [−(pux)|x + (pux)|x+∆x]

+∆x∆z [−(puy)|y + (puy)|y+∆y]

+∆x∆y [−(puz)|z + (puz)|z+∆z] . (2.39)

In a similar way, the rate of doing work against the viscous forces is:

∆y∆z [−(τxxux + τxyuy + τxzuz)|x + (τxxux + τxyuy + τxzuz)|x+∆x]

+∆x∆z [−(τyxux + τyyuy + τyzuz)|y + (τyxux + τyyuy + τyzuz)|y+∆y]

+∆x∆y [−(τzxux + τzyuy + τzzuz)|z + (τzxux + τzyuy + τzzuz)|z+∆z] . (2.40)

Additional Heat Source

Additional heat sources or sinks can be taken into account by simply defining a source term:

QS = ∆x∆y∆zρS . (2.41)

Here QS denotes the heat source term. The subscript S stands for Source or Sink.
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Now we have all terms and are able to rewrite equation (2.22):

∆x∆y∆z
∂

∂t
(ρe+

1

2
ρ|U|2) = ∆y∆z

[
ux(ρe+

1

2
ρ|U|2)|x − ux(ρe+

1

2
ρ|U|2)|x+∆x

]
+∆x∆z

[
uy(ρe+

1

2
ρ|U|2)|y − uy(ρe+

1

2
ρ|U|2)|y+∆y

]
+∆x∆y

[
uz(ρe+

1

2
ρ|U|2)|z − uz(ρe+

1

2
ρ|U|2)|z+∆z

]
+∆y∆z [qx|x − qx|x+∆x] + ∆x∆z [qy|y − qy|y+∆y]

+∆x∆y [qz|z − qz|z+∆z]

+ρ∆x∆y∆z (uxgx + uygy + uzgz)

−∆y∆z [−(pux)|x + (pux)|x+∆x]

−∆x∆z [−(puy)|y + (puy)|y+∆y]

−∆x∆y [−(puz)|z + (puz)|z+∆z]

−∆y∆z [−(τxxux + τxyuy + τxzuz)|x + (τxxux + τxyuy + τxzuz)|x+∆x]

−∆x∆z [−(τyxux + τyyuy + τyzuz)|y + (τyxux + τyyuy + τyzuz)|y+∆y]

−∆x∆y [−(τzxux + τzyuy + τzzuz)|z + (τzxux + τzyuy + τzzuz)|z+∆z]

+∆x∆y∆zρS . (2.42)

As before, we divide everything by the volume dV and use the assumption (2.5). Please keep in

mind, that we have derivatives of (φ|x−φ|x+∆x) that end up with a negative sign and (φ|x+∆x−φ|x)

that end up with a positive sign. Hence, we get:

∂

∂t
(ρe+

1

2
ρ|U|2) =

− ∂

∂x

[
ux(ρe+

1

2
ρ|U|2)

]
− ∂

∂y

[
uy(ρe+

1

2
ρ|U|2)

]
− ∂

∂z

[
uz(ρe+

1

2
ρ|U|2)

]
− ∂

∂x
[qx]− ∂

∂y
[qy]− ∂

∂z
[qz] + ρ (uxgx + uygy + uzgz)

− ∂

∂x
[pux]− ∂

∂y
[puy]− ∂

∂z
[puz] +

∂

∂x
[−(τxxux + τxyuy + τxzuz)]

+
∂

∂y
[−(τyxux + τyyuy + τyzuz)] +

∂

∂z
[−(τzxux + τzyuy + τzzuz)]

+ρS . (2.43)

After taking out the minus signs and sort the equation, we get the conserved total energy equation
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as:

∂

∂t
(ρe+

1

2
ρ|U|2) = −

{
∂

∂x

[
ux(ρe+

1

2
ρ|U|2)

]
+

∂

∂y

[
uy(ρe+

1

2
ρ|U|2)

]
+
∂

∂z

[
uz(ρe+

1

2
ρ|U|2)

]}
−
{
∂

∂x
qx +

∂

∂y
qy +

∂

∂z
qz

}
+ ρ (uxgx + uygy + uzgz)

−
{
∂

∂x
pux +

∂

∂y
puy +

∂

∂z
puz

}
−
{
∂

∂x
(τxxux + τxyuy + τxzuz)

+
∂

∂y
(τyxux + τyyuy + τyzuz) +

∂

∂z
(τzxux + τzyuy + τzzuz)

}
+ ρS

. (2.44)

To get a more visible and readable equation, we use the vector notation. The total energy equation

then can be written in the following form and the terms can be described more precisely:

∂

∂t
(ρe+

1

2
ρ|U|2) =−∇ •

(
ρU(e+

1

2
|U|2)

)
︸ ︷︷ ︸

convection

−∇ • q︸ ︷︷ ︸
conduction

+ ρ (U • g)︸ ︷︷ ︸
gravity

−∇ • (pU)︸ ︷︷ ︸
pressure

−∇ • [τ •U]︸ ︷︷ ︸
viscous forces

+ ρS︸ ︷︷ ︸
heat source

. (2.45)

All terms on the RHS denote the inner product of two vectors. Hence, for a implementation into

a software toolbox we need to use equation (1.7) and (1.8).

Remark: Till now no word is said about the potential energy. This will not be discussed here.

If you need information about that, you will find all necessary information in Bird et al. [1960] p.

314. The reason why we do not mention this, is the fact that in most of the engineering cases, the

potential energy is not of interest or is in a neglect-able range.

2.3.1 The Proof of the Vector Transformation

The next sites will convert the vector form of the total energy equation back into the Cartesian

coordinate system. Hence, equation (2.45) will be used and transformed into (2.44). This is done

step by step but not for each term. The terms of interest are the gravity and viscous force term.

To manipulate the gravity term we need the mathematic law of equation (1.7). For the viscous

force term we need equation (1.8) and (1.17).

It follows that the gravity term can be changed as:

ρ(U • g) = ρ


uxuy
uz

 •
gxgy
gz


 !

= ρ (uxgx + uygy + uzgz) . (2.46)
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The viscous force term can be changed as follows:

−∇ • [τ •U] = −∇ •


τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

 •
uxuy
uz




= −∇ •

τxxux + τxyuy + τxzuz

τyxux + τyyuy + τyzuz

τzxux + τzyuy + τzzuz

 = −


∂
∂x
∂
∂y
∂
∂z

 •
τxxux + τxyuy + τxzuz

τyxux + τyyuy + τyzuz

τzxux + τzyuy + τzzuz


!
= −

{
∂

∂x
(τxxux + τxyuy + τxzuz) +

∂

∂y
(τyxux + τyyuy + τyzuz)

+
∂

∂z
(τzxux + τzyuy + τzzuz)

}
. (2.47)

As we may already might had the feeling, the terms are equal of both notations. The other terms

that are not discussed above are similar to the momentum equation and it is easy to demonstrate

that each term of the vector notation represents the corresponding terms in the Cartesian equation.

Due to that, we will not demonstrate it here again.

2.3.2 Integral Form of the Conserved Total Energy Equation

To obtain the integral form of the total energy equation (2.54), we use the Gauss theorem. It

follows:
∂

∂t

∫
ρ(e+

1

2
|U|2)dV = −

∮
ρU(e+

1

2
|U|2) · ndS −

∮
q · ndS

+

∫
ρU • gdV −

∮
pU · ndS −

∮
(τ •U) · ndS +

∫
ρSdV

. (2.48)

2.3.3 Non-Conserved Total Energy Equation

As before, the mass conservation equation can be used to manipulate the conserved total energy

equation. The transformation lead to the non-conservative form. For that, we first need to break

the time and convective term of equation (2.45) by using the product rule. Hence, the time

derivative can be rewritten as:

∂

∂t
(ρe+

1

2
ρ|U|2) =

∂

∂t

[
ρ(e+

1

2
|U|2)

]
= ρ

∂

∂t
(e+

1

2
|U|2) + (e+

1

2
|U|2)

∂

∂t
ρ . (2.49)

and the convective term will be transformed to:

∇ • ρU(e+
1

2
|U|2) = ρU • ∇(e+

1

2
|U|2)︸ ︷︷ ︸

gradient︸ ︷︷ ︸
inner product

+(e+
1

2
|U|2) ∇ • (ρU)︸ ︷︷ ︸

divergence

. (2.50)

The next step is replacing the above terms into equation (2.45) and put the terms that are related

to the convective part to the LHS:

ρ
∂

∂t
(e+

1

2
|U|2) + (e+

1

2
|U|2)

∂

∂t
ρ+ ρU • ∇(e+

1

2
|U|2) + (e+

1

2
|U|2)∇ • (ρU) = . . . (2.51)
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After taking out the density and the term (e+ 1
2
|U|2), we get:

ρ

[
∂

∂t
(e+

1

2
|U|2) + U • ∇(e+

1

2
|U|2)

]
+ (e+

1

2
|U|2)

[
�������∂

∂t
ρ+∇ • (ρU)

]
︸ ︷︷ ︸

continuity

= . . . (2.52)

We can observe that the second term on the LHS is equal to zero due to the continuity equation.

Based on that, we can simplify the equation and end up with:

ρ

[
∂

∂t
(e+

1

2
|U|2) + U • ∇(e+

1

2
|U|2)

]
= . . . (2.53)

By using the definition of the total derivative (1.21), we finally are able to rewrite the equation in

the non-conservative form:

ρ
D

Dt
(e+

1

2
|U|2) = −∇ • q + ρU • g−∇ • pU−∇ • [τ •U] + ρS . (2.54)

2.3.4 Kinetic Energy and Internal Energy

The total energy equation is the sum of the kinetic energy and internal energy. After we have

either the kinetic or internal energy equation, we can simply subtract that equation from the total

energy equation to get the other one. In your case we will derive the mechanical (kinetic) energy

equation first and get the internal energy equation by subtracting the kinetic energy from the total

energy equation.

The answer why we derive the mechanical (kinetic) energy equation instead of the internal

energy equation is simple. The derivation of the kinetic energy equation can be done simply by

multiplying the momentum equation by the velocity again.
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2.4 The Conserved Mechanical Energy Equation

As mentioned before, we will derive the mechanical (kinetic) energy equation using the momentum

equation. To be consistent with the derivations before, we will split the derivation into two parts.

The first part will use the finite volume element dV to derive the first part of the conserved kinetic

energy equation without explaining the meaning of the source terms. After that we use the source

terms of the momentum equation to get the source terms for the mechanical (kinetic) energy

equation. At that stage it is easier to analyze the meaning of the different terms.

In general we can define the change of kinetic energy in an arbitrary volume element dV as:[
rate of kinetic

energy accumulation

]
=

[
rate of kinetic energy

entering the volume

]
−

[
rate of kinetic energy

leaving the volume

]

+

[
sum of additional

source terms

] (2.55)

Using the definition of the kinetic energy per unit mass (divided by ρ):

ekin =
1

2
|U|2 , (2.56)

we can simply derive the accumulation of the kinetic energy as:

∆x∆y∆z
∆

∆t
ρekin = ∆x∆y∆z

∆

∆t
ρ

1

2
|U|2 . (2.57)

The Convection of Kinetic Energy

The kinetic energy that enters or leaves the volume element is transported due to fluxes and can

be derived analogous to the convective transport of the total energy or momentum:

into face |x : (ρux)
1

2
|U|2|x ,

out of face |x+∆x : (ρux)
1

2
|U|2|x+∆x ,

into face |y : (ρuy)
1

2
|U|2|y ,

out of face |y+∆y : (ρuy)
1

2
|U|2|y+∆y ,

into face |z : (ρuz)
1

2
|U|2|z ,

out of face |z+∆z : (ρuz)
1

2
|U|2|z+∆z .
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With the expressions above, it is possible to rewrite the transport of the kinetic energy due to

convection as: (
(ρux)

1

2
|U|2|x − (ρux)

1

2
|U|2|x+∆x

)
∆y∆z

+

(
(ρuy)

1

2
|U|2|y − (ρuy)

1

2
|U|2|y+∆y

)
∆x∆z

+

(
(ρuz)

1

2
|U|2|z − (ρuz)

1

2
|U|2|z+∆z

)
∆x∆y .

Defining the sum of additional source terms that act on the volume by the quantity eS and put

the new evaluated terms into equation (2.55), we get:

∆x∆y∆z
∂

∂t
ρ

1

2
|U|2 =

(
(ρux)

1

2
|U|2|x − (ρux)

1

2
|U|2|x+∆x

)
∆y∆z

+

(
(ρuy)

1

2
|U|2|y − (ρuy)

1

2
|U|2|y+∆y

)
∆x∆z

+

(
(ρuz)

1

2
|U|2|z − (ρuz)

1

2
|U|2|z+∆z

)
∆x∆y

+eS∆x∆y∆z . (2.58)

To get to a partial differential equation, we will divide the whole equation by the volume of the

element dV . Thus, we get:

∂

∂t
ρ

1

2
|U|2 =

(ρux) 1
2
|U|2|x − (ρux) 1

2
|U|2|x+∆x

∆x

+
(ρuy) 1

2
|U|2|y − (ρuy) 1

2
|U|2|y+∆y

∆y

+
(ρuz)

1
2
|U|2|z − (ρuz)

1
2
|U|2|z+∆z

∆z
+ eS . (2.59)

The next step is to use the assumption of equation (2.5) and (2.6). Therefore, we get the first

part of the kinetic energy equation without any explicit mentioned source term:

∂

∂t
ρ

1

2
|U|2 = − ∂

∂x
(ρux

1

2
|U|2)− ∂

∂y
(ρuy

1

2
|U|2)− ∂

∂z
(ρuz

1

2
|U|2) + eS . (2.60)

The vector notation for this equation is:

∂

∂t
ρ

1

2
|U|2 = −∇ • (ρU

1

2
|U|2) + eS . (2.61)

Equation (2.61) can also be derived using the momentum equation and forming the scalar product

of the local velocity and equation (2.26).

Source Terms of the Kinetic Energy

The kinetic energy can be changed by several phenomena. These sources (terms) act on the volume

element. To get the different source terms we will use the momentum equation (2.26). The terms
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eS are simply the source terms in the momentum equation (2.26) multiplied by the velocity.

Recall: The source terms of the equation of motion are:

• Pressure (surface) ,

• Shear-rate (surface) ,

• Gravity (volume) .

Using this information, we can replace the quantity eS by:

eS = −(∇ • τ ) •U− (∇p) •U + (ρg) •U︸ ︷︷ ︸
work done by gravity

. (2.62)

Note: The multiplication with the velocity results in the inner product.

If we insert the source term eS into equation (2.61), we get the conserved mechanical (kinetic)

energy equation with the source terms.

∂

∂t

1

2
|U|2 = −∇ • (ρU

1

2
|U|2)− (∇ • τ ) •U− (∇p) •U + (ρg) •U . (2.63)

Analyzing the new equation, we already know the meaning of the term on the LHS and the the

first and last term on the RHS. Thinking about the second and third term on the RHS is not

so clear till now. Therefore, we will replace these terms by manipulating both by applying the

product rule. The term that denotes the viscous force, can be rewritten as:

∇ • [τ •U] = τ : (∇⊗U)︸ ︷︷ ︸
gradient︸ ︷︷ ︸

double inner product

+ U • (∇ • τ )︸ ︷︷ ︸
divergence︸ ︷︷ ︸

inner product

. (2.64)

The pressure term can be manipulated like:

∇ • (pU) = U • ∇p︸︷︷︸
gradient︸ ︷︷ ︸

inner product

+p ∇ •U︸ ︷︷ ︸
divergence

. (2.65)

Now we rearrange these equations:

U • (∇ • τ ) = ∇ • [τ •U]− τ : (∇⊗U) , (2.66)

U • ∇p = ∇ • (pU)− p∇ •U , (2.67)

and insert both into equation (2.62). The resulting equation gives us the possibility to get a better

physical base for the meaning of the single terms. Hence, we get for the source terms the following
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expression:

eS = −∇ • [τ •U]︸ ︷︷ ︸
work done

by viscous force

− (−τ : (∇⊗U))︸ ︷︷ ︸
irreversibe conversion

to internal energy
(shear−heating)

−∇ • (pU)︸ ︷︷ ︸
work done by

pressure of sourroundings

− p(−∇ •U)︸ ︷︷ ︸
reversible conversion
to internal energy

+ (ρg) •U︸ ︷︷ ︸
work done
by gravity

. (2.68)

Finally, we use the new evaluated sources eS to get a more understandable and readable kinetic

energy equation:

∂

∂t

1

2
ρ|U|2 = −∇ • (ρU

1

2
|U|2)−∇ • [τ •U]− (−τ : (∇⊗U))

−∇ • (pU)− p(−∇ •U) + (ρg) •U

. (2.69)

The Meaning of Some Terms

• (−τ : ∇U): as stated by Bird et al. [1960], this term is always positive for Newtonian fluids

and describes that motion energy is irreversibly exchanged into thermal energy and therefore

no real processes are reversible. This term will heat up the fluid internally. The heating

due to this term will only be measurable if the speed of the fluid is very high (large velocity

gradients); e.g. high-speed flight or rapid extrusion.

• p(−∇ • U): this term will cool or heat the fluid internally due to sudden expansion or

compression phenomena; e.g. turbines or shock-tubes.

2.4.1 Integral Form of the Conserved Mechanical Energy Equation

The integral form of the kinetic energy equation (2.69) can be achieved by using the Gauss theorem

(1.28) as before. Hence, we get:

∂

∂t

∫
1

2
ρ|U|2dV = −

∮
ρU

1

2
|U|2 · ndS −

∮
[τ •U] · ndS

−
∫

(−τ : (∇⊗U))dV −
∮
pU · ndS −

∫
p(−∇ •U)dV +

∫
(ρg) •UdV

. (2.70)

2.4.2 Non-Conserved Mechanical Energy Equation

As before, we are able to use the continuity equation, to change the conserved kinetic energy

equation into the non-conservative form. Therefore, we have to split the time derivative and

convection term using the product rule again. In addition we have to put the convective term to

the LHS of equation (2.69). Thus, the time derivative will change to:

∂

∂t
ρ

1

2
|U|2 = ρ

∂

∂t

1

2
|U|2 +

1

2
|U|2 ∂

∂t
ρ , (2.71)

and the convection term to:

∇ •
(
ρU

1

2
|U|2

)
= ρU • ∇1

2
|U|2 +

1

2
|U|2∇ • (ρU) . (2.72)
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We end up with:

ρ
∂

∂t

1

2
|U|2 +

1

2
|U|2 ∂

∂t
ρ+ ρU • ∇1

2
|U|2 +

1

2
|U|2∇ • (ρU) = . . . (2.73)

After we exclude ρ and 1
2
|U|2 from the equations, we get:

ρ

[
∂

∂t

1

2
|U|2 + U • ∇1

2
|U|2

]
+

1

2
|U|2

[
�������∂

∂t
ρ+∇ • (ρU)

]
︸ ︷︷ ︸

continuity

= . . . (2.74)

As we can see, the second term on the LHS is zero due to continuity and therefore we get the

non-conserved kinetic energy equation by using the definition of the total derivative (1.21):

ρ
D 1

2
|U|2

Dt
= −∇ • [τ •U]− (−τ : (∇⊗U))−∇ • (pU)− p(−∇ •U) + (ρg) •U . (2.75)

Remark: It should be obvious that we can use equation (2.64) and (2.65) to change/eliminate

some terms again.
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2.5 The Conserved Thermo Energy Equation

After we have the total energy and the kinetic energy equation, we can simply get the equation

for the thermo (internal) energy equation by subtracting equation (2.69) from (2.45). To get the

internal energy equation, we will split the time and convection term of equation (2.45) first. This

is done to separate the single quantities. Hence, we get:

∂

∂t

(
ρe+

1

2
ρ|U|2

)
= −∇ •

(
ρU(e+

1

2
|U|2)

)
+ . . . (2.76)

∂

∂t
(ρe) +

∂

∂t

(
1

2
ρ|U|2

)
= −∇ • (ρUe)−∇ •

(
ρU

1

2
|U|2

)
+ . . . (2.77)

The next step is to replace the underlined term by the conserved kinetic energy equation (2.69).

∂

∂t
(ρe)−∇ •

(
ρU

1

2
|U|2

)
−∇ • [τ •U]− (−τ : (∇⊗U))−∇ • (pU)

− p(−∇ •U) + (ρg) •U = −∇ • (ρUe)−∇ •
(
ρU

1

2
|U|2

)
−∇ • q + ρU • g−∇ • pU−∇ • [τ •U] + ρS . (2.78)

We can see that the second, third, fifth and seventh term on the LHS cancel with the second,

fourth, fifth and sixth term on the RHS. Note that ρU•g = (ρg)•U. Hence, we get the following

equation for the kinetic (internal) energy equation:

∂

∂t
(ρe)− (−τ : (∇⊗U))− p(−∇ •U) = −∇ • (ρUe)−∇ • q + ρS . (2.79)

After sorting the equation we get the final form:

∂

∂t
(ρe) = −∇ • (ρUe)︸ ︷︷ ︸

transport by
convection

−(τ : (∇⊗U))︸ ︷︷ ︸
irreversible
energy by

viscous dissipation
shear−heating

−p(∇ •U)︸ ︷︷ ︸
reversible
energy by

compression

−∇ • q︸ ︷︷ ︸
energy input

by conduction

+ρS︸︷︷︸
heat source

. (2.80)
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2.5.1 Integral Form of the Thermo Energy Equation

The integral form of the internal energy equation (2.80) is observed using the Gauss theorem

(1.28):

∂

∂t

∫
ρedV = −

∮
ρUe · ndS −

∫
(τ : (∇⊗U))dV

−
∫
p(∇ •U)dV −

∮
q · ndS +

∫
ρSdV

. (2.81)

2.5.2 Non-Conserved Thermo (Internal) Energy Equation

As before, we can rewrite the conserved internal energy equation into a non-conserved form using

the continuity equation. For that we split the time and convective terms again. As before, the

terms look always similar. The time derivative will be manipulated to:

∂

∂t
(ρe) = ρ

∂e

∂t
+ e

∂ρ

∂t
, (2.82)

and the convective term to:

∇ • (ρUe) = ρU • ∇e+ e∇ • (ρU) . (2.83)

After inserting the two terms into equation (2.80), we get:

ρ
∂e

∂t
+ e

∂ρ

∂t
+ ρU • ∇e+ e∇ • (ρU) = . . . (2.84)

Now we extract ρ and e:

ρ

[
∂e

∂t
+ U • ∇e

]
︸ ︷︷ ︸

total derivative

+e
[
�������∂ρ

∂t
+∇ • (ρU)

]
︸ ︷︷ ︸

continuity

= . . . (2.85)

Due to the continuity equation, we can cancel out the second term and write the non-conserved

internal energy equation as:

ρ
De

Dt
= −(τ : (∇⊗U))− p(∇ •U)−∇ • q + ρS . (2.86)
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2.6 The Conserved Enthalpy Equation

The next equation that we are going to derive is the conserved enthalpy equation. For that we

will use the total energy equation (2.45) and the definition of the enthalpy h, that is simply the

sum of the internal energy plus the kinematic pressure:

h = e+
p

ρ
. (2.87)

If we replace e in equation (2.45) with the new expression, we get:

∂

∂t

{
ρ

[
h− p

ρ

]
+

1

2
ρ|U|2

}
=−∇ •

(
ρU

{[
h− p

ρ

]
+

1

2
|U|2

})
−∇ • q + ρ (U • g)

−∇ • (pU)−∇ • [τ •U] + ρS .

(2.88)

For further simplification, we split the time and convective term:

∂

∂t
ρh− ∂

∂t
ρ
p

ρ
+

∂

∂t

1

2
ρ|U|2 =−∇ • (ρUh)+∇ •

(
ρU

p

ρ

)
−∇ •

(
ρU

1

2
|U|2

)
−∇ • q

+ ρ (U • g)−∇ • (pU)−∇ • [τ •U] + ρS .

(2.89)

The terms that are underlined are equal and cancel out as well as the density in the second term

of the LHS. Thus, we get the conserved enthalpy equation as:

∂

∂t
ρh− ∂

∂t
p+

∂

∂t

1

2
ρ|U|2 = −∇ • (ρUh)−∇ •

(
ρU

1

2
|U|2

)
−∇ • q

+ρ (U • g)−∇ • [τ •U] + ρS

. (2.90)

2.6.1 Integral Form of the Conserved Enthalpy Equation

The integral form of the conserved enthalpy equation (mechanical energy included) is constructed

by using the Gauss theorem. Hence, equation (2.90) can be rewritten like:

∂

∂t

∫
ρhdV − ∂

∂t

∫
pdV +

∫
∂

∂t

1

2
ρ|U|2dV = −

∮
(ρUh) · ndS +

∫
ρ (U • g) dV

−
∮ (

ρU
1

2
|U|2

)
· ndS −

∮
q · ndS −

∮
[τ •U] · ndS +

∫
ρSdV

. (2.91)

2.6.2 Non-conserved Enthalpy Equation

As for each conserved equation, it is possible to change equation (2.90) to a non-conservative form

by using the continuity equation. To manipulate the conserved equation, we first have to split the

time and convection terms of the enthalpy equation. Hence, the time derivation can be re-ordered

as:
∂

∂t
ρh = ρ

∂

∂t
h+ h

∂

∂t
ρ . (2.92)

The convection term will be manipulated to:

∇ • (ρUh) = ρU • ∇h+ h∇ • (ρU) . (2.93)
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Finally, we replace the split term in equation (2.90) and move the convective term to the LHS.

The result is:

ρ
∂

∂t
h+ h

∂

∂t
ρ− ∂

∂t
p+

∂

∂t

1

2
ρ|U|2 + ρU • ∇h+ h∇ • (ρU) = . . . (2.94)

By taking out the density ρ and enthalpy h of the terms of interest:

ρ

[
∂

∂t
h+ U • ∇h+

]
+ h

[
�������∂

∂t
ρ+∇ • (ρU)

]
︸ ︷︷ ︸

continuity

+
∂

∂t

1

2
ρ|U|2 − ∂

∂t
p = . . . (2.95)

and sort the equation, we get the non-conserved enthalpy equation:

ρ
Dh

Dt
= − ∂

∂t

1

2
ρ|U|2 +

∂

∂t
p−∇ •

(
ρU

1

2
|U|2

)
−∇ • q + ρ (U • g)

−∇ • [τ •U] + ρS

. (2.96)

2.6.3 The Conserved Enthalpy Equation (only Thermo)

In many literatures we find another enthalpy equation. The difference is, that the mechanical

energy is removed and we only have the thermo energy included. Therefore, we need to subtract

equation (2.90) with (2.69) and use (2.65):{
∂

∂t
ρh− ∂

∂t
p+

∂

∂t

1

2
ρ|U|2

}
−
{
∂

∂t

1

2
ρ|U|2

}
= . . .

�continues on next site

. . .

{
−∇ • (ρUh)−∇ •

(
ρU

1

2
|U|2

)
−∇ • q + ρ (U • g)−∇ • [τ •U] + ρS

}

−
{
−∇ • (ρU

1

2
|U|2)−∇ • [τ •U]− (−τ : (∇⊗U))

−∇ • (pU)− p(−∇ •U) + (ρg) •U} . (2.97)

The outcome of the subtraction is, that a lot of terms can be canceled out. Furthermore, the

10th and 11th term on the RHS can be combined using the product rule. Thus, we are allowed

to rewrite this term as −U •∇p. The equation we get is very common and can be found in many

literatures.

∂

∂t
ρh− ∂

∂t
p = −∇ • (ρUh)−∇ • q + ρS + (−τ : (∇⊗U)) + U • ∇p . (2.98)

Furthermore, it is possible to modify this equation by putting the second term of the LHS to the

RHS:
∂

∂t
ρh = −∇ • (ρUh)−∇ • q + ρS + (−τ : (∇⊗U)) +

∂

∂t
p+ U • ∇p︸ ︷︷ ︸

Total derivative

. (2.99)
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This lead to the the total derivative on the RHS for the pressure and we can apply the rule given

by equation (1.21). The modified equation is then given by:

∂

∂t
ρh = −∇ • (ρUh)−∇ • q + ρS + (−τ : (∇⊗U)) +

Dp

Dt
. (2.100)

Note: The equation above can be found in the following literatures Bird et al. [1960], Ferziger

and Perić [2008], Schwarze [2013]. Keep in mind that we still did not introduce the definition of

the shear-rate tensor τ . Therefore, we have a negative sign in front of τ .
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Chapter 3

The Governing Equations for Engineers

Normally, it is sufficient enough (for engineers) to know the general conservation equation for an

arbitrary quantity φ. Once the meaning of this equation is understood, we are able to – probably

– derive any kind of equation. The general (governing) conservation equation of any quantity φ is

given by:
∂

∂t
ρφ︸ ︷︷ ︸

time accumulation

= − ∇ • (ρUφ)︸ ︷︷ ︸
convective transport

+ ∇ • (D∇φ)︸ ︷︷ ︸
diffusive transport

+ Sφ︸︷︷︸
source terms

. (3.1)

In the equation above, D stands for the diffusion coefficient, that can be a scalar or a vector and

Sφ stands for any kind of sources or sinks that influence the quantity φ. Now we are able to

simply derive the mass, momentum and other conservative equations out of this by replacing the

quantity φ by the quantity of interest.

3.1 The Continuity Equation

To derive the mass conservation equation, we have to replace φ by 1. Furthermore, we have to

know that the mass is not transfered by diffusion and we suggest that the mass is not transfered

into energy or vice verse; no source terms. Thus, we get the continuity equation (2.12):

∂

∂t
ρ = −∇ • (ρU) . (3.2)

Of course, if we have an incompressible fluid we get equation (2.13).

3.2 The Momentum Equation

To get the momentum equation we replace φ by U. In addition, we need to know the diffusion

term and all other source terms that influence the momentum in the volume element. The diffusion

term determines the transport of momentum due to molecular effects (τ ). The source terms are:

gravitational acceleration and the pressure force. Later on, we see a more general form of these

equation.
∂

∂t
ρU = −∇ • (ρU⊗U) +∇ • τ −∇p+ ρg (3.3)

37
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Note: As we see, the shear-rate tensor τ has a positive sign in this equation. In each equation

before we had a negative sign. The sign change will be understood after we introduce the definition

of the shear-rate components (all components are negative). In the equation above we already

applied the definition of the shear-rate components and hence the sign has to change.

The momentum equation shows, that it is possible to use the governing conservation equation

to derive other – more complex – equations. Doing so, we always have to know which source terms

are important and how the diffusion term looks like. If we get more familiar with the equations

especially with the stress-tensor and the source terms, it is very easy to use this equation and

derive the one that is needed.

3.3 The Enthalpy Equation

To derive the enthalpy equation, we have to replace φ by h. This will lead to the internal energy

equation. The diffusion term (−∇ • q) can be expressed by the Fourier law q = −λ∇T . In

addition, the energy of a fluid can be changed by other sources like the pressure work, friction,

and so on. These terms are given in the chapter before and are neglected now.

∂

∂t
ρh = −∇ • (ρUh) +∇ • (λ∇T ) (+Sh)︸ ︷︷ ︸

neglected

. (3.4)

It should be mentioned that the enthalpy equation has a special characteristic because is the

necessity to know the temperature field T . The enthalpy equation is of interest, if we are solving

compressible fluids. That can be also analyzed from the OpenFOAMr toolbox. For incompressible

fluids, no temperature or enthalpy equation is used whereas for compressible fluid we solve the

enthalpy equation. However we set the temperature field, we recalculate the enthalpy based on

the temperature fluid and the fluid properties.

Temperature equation

The temperature equation can be derived using the thermodynamic relation:

cp =
∂h

∂T
.

Assuming constant heat capacity and incompressibility, we can manipulate the enthalpy equation

to get to the following temperature equation:

cp
∂

∂t
ρT = −cp∇ • (ρUT ) +∇ • (λ∇T ) (+Sh)︸ ︷︷ ︸

neglected

. (3.5)

Depending on the field we are working on, we have to take care about different phenomena

that influence the temperature in our system. Example given: if friction, pressure work or the

kinetic energy accumulation are really influencing the enthalpy equation, we have to take these

phenomena into account. However, as already mentioned above, the temperature equation was

derived with the assumptions of incompressibility and constant heat capacity. Therefore, we

should be aware if the equation is valid in the case we are trying to solve. Solver crashes in

OpenFOAMr are sometimes related to wrong coupled equations. One nice example would be,
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solving a fluid for incompressible fluids but using a temperature depended density. It can be shown

— mathematically —, that this case can cause troubles if the implementation is not done correct.

In addition it is worth to mention, that the temperature equation looks different if the above

mentioned assumptions are not fulfilled. An extension to that topic might come in some new

release.

3.3.1 Common Source Terms

• Shear-heating – viscous dissipation

Shear-heating can be included to the enthalpy equation. Therefore, we have to add the term that

describes the shear-heating; compare equation (2.80):

Ssh = τ : (∇⊗U) . (3.6)

• Pressure work

Pressure can also increase the enthalpy of a fluid during time. This can be expressed as; compare

equation (2.90):

Spw =
∂p

∂t
. (3.7)

Note: This term can be turned on and off in the enthalpy equation by using the dpdt keyword

within the thermophysicalProperties file in OpenFOAMr. By default it is set to yes. The term

was introduced in OpenFOAMr 2.2.0.

• Additional pressure work

There is also an additional pressure work done by the divergence of the pressure and velocity;

compare (2.68):

Sapw = ∇ • (Up) . (3.8)

If we are dealing with incompressible fluids, we are allowed to say that the additional pressure

work is only done by the gradient of the pressure ∇p because we can split Sapw using the product

rule. If follows:

Sapw = ∇ • (Up) = U • ∇p+ p ∇ •U︸ ︷︷ ︸
continuity

= U • ∇p . (3.9)

Other source terms can be found in chapter 2 or in the literature that was given at the beginning

of this chapter.
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Chapter 4

Summary of the Equations

On the next site, all derived equations are given in a summary for a fast look-up. Depending on

the problem we are focusing on, special terms can be neglected or has to be taken into account.

Thus, we should be familiar with the toolbox — which equation and which terms are solved —

and the equation respectively.

There are more equations that could be included here; for example the equation for solid

mechanics (stress calculation) and/or magneto hydrodynamics (Maxwell-equations). Due to the

fact that we did not discuss these special kind of equations, they are not presented here.

However, it is worth to mention that this section will be extended based on the time I can

spend on the book. In addition — and again — voluntary contributors are welcomed to work on

that book and extend it with their topics.
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Chapter 5

The Shear-rate Tensor and the Navier-Stokes

Equations

The equations that we derived till now allow us to calculate the flow fields numerically. This enables

the possibility to get a better insight into the physics and lead to a better understanding about

the phenomena in the flow field which can be used to optimize designs or increase the efficiency of

a special device. In addition, it is possible to extract quantities that are not measurable in reality

– just imagine a liquid metal and measuring the pressure or velocity in a simple way. However,

if we analyze the equations we figure out that some quantities are not known; for example the

shear-rate components τij . These unknown quantities have to be expressed by known one.

The shear-rate tensor is expressed by different equations which depend on the behavior of the

liquid. Here we distinguish between Newtonian and Non-Newtonian fluids. In this chapter we

introduce the shear-rate tensor τ for Newtonian fluids. Further notes and information can be

found in Ferziger and Perić [2008], Bird et al. [1960], Dantzig and Rappaz [2009].

5.1 Newtonian Fluids

If we investigating into Newtonian fluids, we use the Newtonian law for the shear-rate (viscous

stress) tensor τ . It was shown that the nine components can be described as:

τxx = −2µ
∂ux
∂x

+ (
2

3
µ− κ)(∇ •U) , (5.1)

τyy = −2µ
∂uy
∂y

+ (
2

3
µ− κ)(∇ •U) , (5.2)

τzz = −2µ
∂uz
∂z

+ (
2

3
µ− κ)(∇ •U) , (5.3)

τxy = τyx = −µ
(
∂ux
∂y

+
∂uy
∂x

)
, (5.4)

τyz = τzy = −µ
(
∂uy
∂z

+
∂uz
∂y

)
, (5.5)

τzx = τxz = −µ
(
∂uz
∂x

+
∂ux
∂z

)
. (5.6)
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The normal stress components have the quantity κ included. Bird et al. [1960] describes this

variable as the bulk viscosity. However, in chapter 7, we see that this definition is not correct and

we should describe the bulk viscosity in a different manner. Nevertheless, as Bird et al. [1960]

mentioned, the quantity κ is not really important for dense gases and liquids and can be neglected;

again, later on we see why. The other term in the normal stress components takes the value 2
3
µ,

which many authors refers to the secondary viscosity, dilatation term or first Lamés coefficient

that is again not correct. The main reason for that misleading definition is based on the fact that

we can make the following correlation λ = − 2
3
µ. Further information can be found in chapter 7

or directly in Gurtin et al. [2010]. However, we will keep κ for now in the equations.

Remark

In general it is sufficient to know how the shear-rate tensor is defined. However, if we are going to

implement new models or establish new models, it is necessary to understand the different terms

and their meaning. Therefore, it is a good choice to know why and how we get to the shear rate

tensor. In addition we should make clear statements about the quantities pressure and equilibrium

pressure. Everything about that can be found in Gurtin et al. [2010].

Continued

If we insert the above mentioned definitions of the shear-rate components into the momentum

equations (2.23), (2.24) and (2.25), we will get the momentum equations for Newtonian fluids also

known as Navier-Stokes equations.

For the x-component of the Navier-Stokes equation we get:

∂

∂t
ρux =−

(
∂

∂x
ρuxux +

∂

∂y
ρuyux +

∂

∂z
ρuzux

)
−
{
∂

∂x

[
−2µ

∂ux
∂x

+ (
2

3
µ− κ)(∇ •U)

]
+

∂

∂y

[
−µ
(
∂ux
∂y

+
∂uy
∂x

)]
+

∂

∂z

[
−µ
(
∂uz
∂x

+
∂ux
∂z

)]}
− ∂p

∂x
+ ρgx

. (5.7)

For the y-component of the Navier-Stokes equation we get:

∂

∂t
ρuy =−

(
∂

∂x
ρuxuy +

∂

∂y
ρuyuy +

∂

∂z
ρuzuy

)
−
{
∂

∂x

[
−µ
(
∂ux
∂y

+
∂uy
∂x

)]
+

∂

∂y

[
−2µ

∂uy
∂y

+ (
2

3
µ− κ)(∇ •U)

]
+

∂

∂z

[
−µ
(
∂uz
∂y

+
∂uy
∂z

)]}
− ∂p

∂y
+ ρgy

, (5.8)

and finally the z-component of the Navier-Stokes equation can be written as:
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∂

∂t
ρuz =−

(
∂

∂x
ρuxuz +

∂

∂y
ρuyuz +

∂

∂z
ρuzuz

)
−
{
∂

∂x

[
−µ
(
∂ux
∂z

+
∂uz
∂x

)]
+

∂

∂y

[
−µ
(
∂uy
∂z

+
∂uz
∂y

)]
+

∂

∂z

[
−2µ

∂uz
∂z

+ (
2

3
µ− κ)(∇ •U)

]}
− ∂p

∂z
+ ρgz

. (5.9)

The three equations can be put together by using the Einsteins summation convention:

∂

∂t
ρui = − ∂

∂xj
(ρujui)−

∂

∂xi

[
−2µ

(
1

2

{
∂ui
∂xj

+
∂uj
∂xi

})
+

(
2

3
µ− κ

)
∂ui
∂xi

]
− ∂p

∂xi
+ ρgi

. (5.10)

Introducing the deformation rate (strain-rate) tensor D,

D =
1

2

[
∇⊗U + (∇⊗U)T

]
, (5.11)

where T stands for the transpose operation, that means Aij → Aji, we are able to write the vector

form of this equation:

∂

∂t
ρU = −∇ • (ρU⊗U)−∇ •

(
−2µD +

[
2

3
µ− κ

]
(∇ •U)I

)
−∇p+ ρg . (5.12)

Finally, we take the negative sign into the brackets of the second term on the RHS to get the

general Navier-Stokes equation in vector notation:

∂

∂t
ρU +∇ • (ρU⊗U) = ∇ •

(
2µD +

[
−2

3
µ+ κ

]
(∇ •U)I

)
︸ ︷︷ ︸

viscous stress tensor τ

−∇p+ ρg . (5.13)

The viscous stress tensor also named shear-rate or deformation rate tensor τ can be defined as:

τ =

(
2µD +

[
−2

3
µ+ κ

]
(∇ •U)I

)
. (5.14)

If we use κ = 0, which comes from the Stokes, we get the common Navier-Stokes equation as

shown in almost all literatures:

∂

∂t
ρU +∇ • (ρU⊗U) = ∇ •

(
2µD− 2

3
µ(∇ •U)I

)
︸ ︷︷ ︸

viscous stress tensor τ

−∇p+ ρg . (5.15)

Another form of the momentum equation (5.13) can be achieved after pushing the pressure gradient
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into the viscous stress tensor:

∂

∂t
ρU +∇ • (ρU⊗U) = ∇ •

(
2µD +

{[
−2

3
µ+ κ

]
(∇ •U)− p

}
I

)
︸ ︷︷ ︸

Cauchy stress tensor σ

+ρg . (5.16)

The result of the bracket is called the Cauchy stress tensor σ. A discussion about this quantity is

given in chapter 6. Finally, it has to be mentioned that there are much more ways to define this

equation. Especially if we distinguish between total pressure p and the equilibrium pressure peq.

See chapter 7.

The momentum equation can also be defined for solids. Therefore we are using the Lamés

coefficients. More information about why we can use this equation for solids too, can be found

in Gurtin et al. [2010]. A short overview of some constitutive relations are given in chapter 7.

Implementation information and stability terms for solid stress simulations can be found in Jasak

and Weller [1998].

5.1.1 The Proof of the Transformation

The following section discusses the transformation of the vector form into the Cartesian one. As

before, we will investigate only into the terms that are not discussed till now. The terms that

we are going to investigate are the viscous stress tensor τ and the pressure gradient of equation

(5.13).

∇ •
(

2µD +

[
−2

3
µ+ κ

]
(∇ •U)I

)
−∇p .

The first step is to split the terms:

∇ • (2µD) +∇ •
([
−2

3
µ+ κ

]
(∇ •U)I

)
−∇p .

It is easy to demonstrate that the pressure gradient is equal to the terms in equation (5.7), (5.8)

and (5.9). Additionally it is easy to show that the expression of ∇• (pI) is equal to ∇p. For that,

we are using the mathematic operation (1.17):

−∇ • (pI) = −∇ •

p
1 0 0

0 1 0

0 0 1


 = −


∂
∂x
∂
∂y
∂
∂z

 •
p 0 0

0 p 0

0 0 p

 !
= −


∂p
∂x
∂p
∂y
∂p
∂z

 = −∇p . (5.17)
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As we can see, the terms are equal for the pressure. The investigation into the first term that

includes the deformation rate tensor D, needs the mathematic operations (1.14) and (1.17):

∇ • (2µD) = ∇ •
(

2µ
1

2

[
∇⊗U + (∇⊗U)T

])
(5.18)

= ∇ •

µ



∂
∂x
∂
∂y
∂
∂z

⊗
uxuy
uz

+




∂
∂x
∂
∂y
∂
∂z

⊗
uxuy
uz



T

 (5.19)

= ∇ •

µ


∂ux
∂x

∂uy
∂x

∂uz
∂x

∂ux
∂y

∂uy
∂y

∂uz
∂y

∂ux
∂z

∂uy
∂z

∂uz
∂z

+


∂ux
∂x

∂ux
∂y

∂ux
∂z

∂uy
∂x

∂uy
∂y

∂uy
∂z

∂uz
∂x

∂uz
∂y

∂uz
∂z



 (5.20)

= ∇ •

µ

∂ux
∂x

+ ∂ux
∂x

∂uy
∂x

+ ∂ux
∂y

∂uz
∂x

+ ∂ux
∂z

∂ux
∂y

+
∂uy
∂x

∂uy
∂y

+
∂uy
∂y

∂uz
∂y

+ ∂ux
∂z

∂ux
∂z

+ ∂uz
∂x

∂uy
∂z

+ ∂uz
∂y

∂uz
∂z

+ ∂uz
∂z


 (5.21)

=


∂
∂x
∂
∂y
∂
∂z

 •
µ[ ∂ux

∂x
+ ∂ux

∂x
] µ[

∂uy
∂x

+ ∂ux
∂y

] µ[ ∂uz
∂x

+ ∂ux
∂z

]

µ[ ∂ux
∂y

+
∂uy
∂x

] µ[
∂uy
∂y

+
∂uy
∂y

] µ[ ∂uz
∂y

+ ∂ux
∂z

]

µ[ ∂ux
∂z

+ ∂uz
∂x

] µ[
∂uy
∂z

+ ∂uz
∂y

] µ[ ∂uz
∂z

+ ∂uz
∂z

]

 (5.22)

=


∂
∂x

(
2µ ∂ux

∂x

)
+ ∂

∂y

(
µ[
∂uy
∂x

+ ∂ux
∂y

]
)

+ ∂
∂z

(
µ[ ∂uz

∂x
+ ∂ux

∂z
]
)

∂
∂x

(
µ[ ∂ux

∂y
+

∂uy
∂x

]
)

+ ∂
∂y

(
2µ

∂uy
∂y

)
+ ∂

∂z

(
µ[ ∂uz

∂y
+ ∂ux

∂z
]
)

∂
∂x

(
µ[ ∂ux

∂z
+ ∂uz

∂x
]
)

+ ∂
∂y

(
µ[
∂uy
∂z

+ ∂uz
∂y

]
)

+ ∂
∂z

(
2µ ∂uz

∂z

)
 !

=


of x−mom.

of y −mom.

of z −mom.

. (5.23)

Now we need to check if the terms are correct; of course equation (5.23) already shows that the

terms have to be similar but we will demonstrate why. For that, we use the term within the

brackets {...} of equation (5.7),

−
{
∂

∂x

[
−2µ

∂ux
∂x

+ (
2

3
µ− κ)(∇ •U)

]
+
∂

∂y

[
−µ
(
∂ux
∂y

+
∂uy
∂x

)]
+

∂

∂z

[
−µ
(
∂uz
∂x

+
∂ux
∂z

)]}
, (5.24)

taking the minus sign into the brackets, split the x-derivative, we end up with:

∂

∂x

(
2µ
∂ux
∂x

)
− ∂

∂x

(
(
2

3
µ− κ)(∇ •U)

)
+

∂

∂y

[
µ

(
∂ux
∂y

+
∂uy
∂x

)]
+

∂

∂z

[
µ

(
∂uz
∂x

+
∂ux
∂z

)]
. (5.25)



48 The Shear-rate Tensor and the Navier-Stokes Equations

Apply the same procedure on the terms of equation (5.8) and (5.9), we get the analyzed term of

the y-momentum to:

∂

∂x

[
µ

(
∂ux
∂y

+
∂uy
∂x

)]
+

∂

∂y

(
2µ
∂uy
∂y

)
− ∂

∂y

(
(
2

3
µ− κ)(∇ •U)

)
+

∂

∂z

[
µ

(
∂uz
∂y

+
∂uy
∂z

)]
, (5.26)

and the term of the z-momentum is equal to:

∂

∂x

[
µ

(
∂ux
∂z

+
∂uz
∂x

)]
+

∂

∂y

[
µ

(
∂uy
∂z

+
∂uz
∂y

)]
+

∂

∂z

(
2µ
∂uz
∂z

)
− ∂

∂z

(
(
2

3
µ− κ)(∇ •U)

)
. (5.27)

The underlined terms occur in equations (5.23). That means, that the vector form and Cartesian

one are similar for these term but there is one term missing in each derivative. This term comes

from the last term that we neglected till now. The last term can be manipulated to:

−∇ •
([

2

3
µ− κ

]
(∇ •U)I

)
= −∇ •

[2

3
µ− κ

]
(∇ •U)

1 0 0

0 1 0

0 0 1


 (5.28)

= −


∂
∂x
∂
∂y
∂
∂z

 •

[

2
3
µ− κ

]
(∇ •U) 0 0

0
[

2
3
µ− κ

]
(∇ •U) 0

0 0
[

2
3
µ− κ

]
(∇ •U)

 (5.29)

=

−
∂
∂x

[ 2
3
µ− κ](∇ •U)

− ∂
∂y

[ 2
3
µ− κ](∇ •U)

− ∂
∂z

[ 2
3
µ− κ](∇ •U)

 !
=


of x mom

of y mom

of z mom

. (5.30)

As demonstrated, all terms of the shear-rate tensor are similar and therefore the vector form is

identical to the three single Cartesian ones.

5.1.2 The Term − 2
3µ(∇ •U)

As mentioned at the beginning of this chapter, the second term − 2
3
µ is referred in many liter-

atures to be the dilatation viscosity. As already said, the choice of this nomenclature is a bad

one. However, this term represents expansion and compression phenomena. To demonstrate the

meaning of the term and the correlation to expansion and compression phenomena, we will use

the continuity equation to modify this equation. The mass conservation equation is given by:

∂ρ

∂t
+∇ • (ρU) = 0 . (5.31)

After applying the product law (1.18), we get:

∂ρ

∂t
+ ρ∇ •U + U • ∇ρ = 0 , (5.32)
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∇ •U = −1

ρ

[
∂ρ

∂t
+ U • ∇ρ

]
. (5.33)

This expression is now insert into the shear-rate tensor τ of equation (5.13). The outcome is the

following: We clearly see that the second term on the RHS is only related to the density change

and thus, it is related to expansion and compression phenomena:

τ = 2µD− 2

3
µ

{
−1

ρ

[
∂ρ

∂t
+ U • ∇ρ

]}
︸ ︷︷ ︸
expansion and compression

I . (5.34)

5.1.3 Further Simplifications

If we assume incompressibility of the fluid, ρ = constant, we can use the continuity equation for a

simplifying the shear-rate tensor. Hence, the second term in equation (5.34), the dilatation term,

depends only on the density, this term will vanish based on the fact that the density will not

change during time and the gradient of a constant number is zero. In addition, we are allowed to

take out the density of all remaining derivatives. Thus, we can divide by this quantity to get rid

of the density. The result of the shear-rate tensor is as follows (ν = µ
ρ

):

τ = 2νD . (5.35)

If the dynamic viscosity ν can be assumed as constant, we further can simplify the equation by

taking out the viscosity of the divergence operator:

∇ • τ = ν∇ • (∇⊗U + (∇⊗U)T ) . (5.36)

The underlined term results in a tensor that can be simplified by the continuity equation. Thus,

we get the famous Laplace equation:

∇ • τ = ν∇2U = ν∆U . (5.37)

5.2 Non-Newtonian fluid

Considering non-Newtonian fluids, the shear-rate tensor has to be treated in another way due to

the fact that the Newtonian law is not valid anymore. For that we can use the equation suggested

by Herschel-Bulkley. They assumed the shear-rate tensor with a power law equation:

τ = τ 0 + kγ̇n (5.38)

This equation can be used in modelling Non-Newtonian fluids. Further simplifications are made by

Ostwald and de Waele. They assume that τ 0 = 0. Therefore we get the two parameter equation:

τ = kγ̇n (5.39)

k denotes a consistency factor, γ̇ the shear-rate and n the potential factor.

Using the following parameters k = 2µ, γ̇ = D and n = 1 lead to the shear-rate tensor for

incompressible Newtonian fluids.
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Remark: This section was build in the first edition and is not added without proofing. There

is no time to update this section right now. However, my colleagues are modeling non-Newtonian

fluids with a different viscosity model rather than a different strain-rate tensors.



Chapter 6

Relation between the Cauchy Stress Tensor,

Shear-Rate Tensor and Pressure

In equation (5.16) we introduced the Cauchy stress tensor σ. This stress tensor includes all

stresses that act on the volume element dV . That means, shear and pressure forces because both

can related to stresses. How the total stress, shear-rate stress and pressure are related is briefly

discussed in this chapter.

First we start with the introducing of the Cauchy stress tensor σ:

σ =

σxx σxy σxz

σyx σyy σyz

σzz σzy σzz

 . (6.1)

As we know from chapter 1, we are able to split each matrix into a deviatoric and hydrostatic

part. The definition is given in equation (1.24) and can be applied to the Cauchy stress tensor:

σ = σhyd + σdev . (6.2)

The hydrostatic part of an arbitrary matrix A has the special meaning of the negative pressure

p. Hence, equation (1.25) or (1.26) can be related to the pressure as:

− p = Ahyd =
1

3
tr(A) , (6.3)

− pI = AhydI =
1

3
tr(A)I . (6.4)

Using the definition of the deviatoric part (1.27) and the above expression, we can rewrite equation

(6.2):

σ = −pI +

[
σ − 1

3
tr(σ)I

]
︸ ︷︷ ︸

shear−rate tensor τ

. (6.5)

The deviatoric part is defined as the shear-rate stress and can be expressed by the shear-rate

tensor τ :

σdev = τ , (6.6)
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σ = −pI + τ . (6.7)

Depending on the fluid we are using, τ has to be replaced with the correct expressions.

Note: In fluid dynamics it is common to use the split Cauchy tensor to get the shear-rate

tensor and pressure. In solid mechanics it is common to work with the full stress tensor σ, compare

Jasak and Weller [1998].



Chapter 7

The bulk viscosity

As we already pointed out in chapter 5, Bird et al. [1960] referred the quantity κ which is included

in the normal components of the shear-rate tensor as bulk viscosity. The bulk viscosity is also

named, dilatation viscosity, volumetric viscosity or volume viscosity. All of these names represent

the same. In order to make a clear statement about the bulk viscosity, we have to go deeper into the

basics of the mechanics and thermodynamics. All necessary informations can be found in Gurtin

et al. [2010] which are summarized and compressed in the following chapter for compressible fluids

that show a linear function in the viscosity for the shearing.

First we have to know that an isotropic linear tensor function T(A) is isotropic, if and only if

there are two quantities (scalars) µ and λ (do not mix with first and second Lamé coefficient or

molecular viscosity here) such that we can define the tensor function as:

T(A) = 2µA + λ tr(A)I . (7.1)

Gurtin et al. [2010] proofed that the shear-rate tensor (also named stretch tensor in their book)

is an isotropic tensor which can be shown using frame-indifferences and thus τ has to follow the

equation above.

To demonstrate which quantity defines the bulk viscosity, we have to start with the Cauchy

stress tensor σ which is depended on the density and the strain-rate tensor D. Why we have the

density included can be seen in equation (7.9). It follows:

σ = σ(ρ,D) . (7.2)

Defining a new quantity σ(ρ, 0) that represents the stress in the fluid in the absence of flow (no

velocity gradients and therefore no shearing), we are able to write the viscous (deviatoric) part of

the Cauchy stress tensor as:

σvis(ρ,D) = σ(ρ,D)− σ(ρ, 0) . (7.3)

Based on the fact that σ(ρ, 0) has to be an isotropic tensor, it has the specific form to be equal

to the negative equilibrium pressure peq:

σ(ρ, 0) = −peq(ρ)I . (7.4)
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Finally, after we sum up the latest results, we end up with:

σ(ρ,D) = σvis(ρ,D)− peq(ρ)I . (7.5)

Equation 7.5 is similar but not equal to 6.7 based on the the equilibrium pressure and the viscous

term. Later we see why both equations are equal for some particular cases – in which we are

working commonly. Using the already known definition of the total pressure p, which is given by:

p(ρ) = −1

3
tr(σ) , (7.6)

we are able to express the total pressure by the equilibrium pressure and the viscous stress tensor:

p(ρ) = −1

3
tr
[
−peq(ρ)I + σvis(ρ,D)

]
. (7.7)

It is trivial that this lead to:

p(ρ) = peq(ρ)− 1

3
tr [σvis(ρ,D)] . (7.8)

Now it is obvious that the total pressure for compressible fluids is based on two different contri-

butions, the equilibrium pressure and a part, namely the isotropic one, of the viscous part which

is based on internal friction.

The question that may arise is: Where is the equilibrium pressure in all equations that we had

before. To answer this, we have to use the relation (7.1) for the viscous part, σvis(ρ,D). Thus,

we get:

σvis(ρ,D) = 2µ(ρ)D + λ(ρ) tr(D)I . (7.9)

The next step is to split the deformation (strain-rate) tensor in its deviatoric and hydrostatic

(spherical) part:

D = D0 +
1

3
tr(D)I , (7.10)

and insert this expression into the first term on the RHS of equation (7.9). The quantity D0

represents the deviatoric part of the strain-rate tensor which include only friction which acts

angular. In other words, these components try to deform the volume element while keeping the

volume of the element constant (no compression or expansion). Thus, it follows:

σvis(ρ,D) = 2µ(ρ)

[
D0 +

1

3
tr(D)I

]
+ λ(ρ) tr(D)I , (7.11)

= 2µ(ρ)D0 + 2µ(ρ)
1

3
tr(D)I + λ(ρ) tr(D)I , (7.12)

= 2µ(ρ)D0 +

[
2

3
µ(ρ) + λ(ρ)

]
︸ ︷︷ ︸

=κ(ρ)

tr(D)I , (7.13)

= 2µ(ρ)D0 + κ(ρ) tr(D)I . (7.14)

κ represents the bulk viscosity, volumetric viscosity, volume viscosity or dilatation viscosity and

is equal to:

κ(ρ) =
2

3
µ(ρ) + λ(ρ) . (7.15)
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Now we stated the correct bulk viscosity definition. Comparing this with Bird et al. [1960], we

see that there is a difference in the nomenclature.

Now, if we take the trace of equation (7.14):

tr [σvis(ρ,D)] = 3κ(ρ) tr(D) , (7.16)

and put this into equation (7.8), we get:

p(ρ) = peq(ρ)− κ(ρ) tr(D) , (7.17)

and thus the Cauchy stress tensor can be written as:

σ(ρ,D) = 2µ(ρ)D0 − p(ρ)I . (7.18)

Again, this equation looks similar to equation (6.7) but is in fact not equivalent. In addition the

above constitutive equation for the stress tensor σ is only valid for compressible fluids which have

a linear viscosity behavior. To get the equivalence of both equations we have to go further.

As Bird et al. [1960] already mentioned, the quantity κ is not too important and can be

neglected which is also stated by Gurtin et al. [2010]. Based on that, it is common to use the

Stokes relation given by the definition κ = 0. Doing that, we directly see that λ has to be equal

to − 2
3
µ, cf (7.15). If we insert the outcome related to the Stokes hypothesis into equation (7.9),

and express the quantity µ with the molecular viscosity of the fluid, we get the expression for the

shear-rate tensor τ ; cf. equation (5.15). In addition we see, considering equation (7.17), that the

total pressure p is equal to the equilibrium pressure peq in the case when we assume the Stokes

relation.

Thus, both equations are equivalent.

Remark

In this chapter we used a form of the equations which included the functionality dependency of

the quantities. This was done just in order to show the dependency which is not really necessary.

In addition, this was just a brief summary for compressible linearly viscous fluids. Furthermore,

keep in mind that the variables λ(ρ) and µ(ρ) in this section are not related to the molecular

viscosity or the Lamés coefficients and represent two arbitrary scalar functions which depend on

the density. Further information can be found in Gurtin et al. [2010].
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Chapter 8

Collection of Different Notations of the

Momentum Equations

In literatures we find a lot of different notations for the momentum equation for Newtonian fluids.

It is obvious that we can change the stress tensors as we want and play around with the mathematic

laws to manipulate the equation as we like to have it.

• Common conserved momentum equation (2.26):

∂

∂t
ρU = −∇ • (ρU⊗U)−∇ • τ −∇p+ ρg . (8.1)

• Conserved momentum equation with the shear-rate tensor:

∂

∂t
ρU = −∇ • (ρU⊗U) +∇ •

(
2µD− 2

3
µ(∇ •U)I

)
−∇p+ ρg . (8.2)

• Conserved momentum equation as used in chapter 7:

∂

∂t
ρU = −∇ • (ρU⊗U) +∇ •

(
2µD0 + (λ+

2

3
µ)(∇ •U)I

)
−∇p+ ρg . (8.3)

• Conserved momentum equation with bulk viscosity:

∂

∂t
ρU = −∇ • (ρU⊗U) +∇ • (2µD0 + κ(∇ •U)I)−∇p+ ρg . (8.4)
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• Conserved momentum equation with trace operator:

∂

∂t
ρU = −∇ • (ρU⊗U) +∇ •

(
2µD− 2

3
µ tr(D)I

)
−∇p+ ρg . (8.5)

• General conserved momentum equation with Cauchy stress tensor:

∂

∂t
ρU = −∇ • (ρU⊗U) +∇ • σ + ρg . (8.6)

• Non-conserved momentum equation with Cauchy stress tensor:

ρ
DU

Dt
= ∇ • σ + ρg . (8.7)

• Integral form of momentum equation:

∂

∂t

∫
ρUdV = −

∮
(ρU⊗U) · ndS −

∮
τ · ndS −

∮
pI · ndS +

∫
ρgdV . (8.8)

It should be obvious that we can transform all equations above into the non-conservative or integral

form.

The Proof that the Trace Operator replaces the Divergence Operator

In one equation above we replaced the divergence operator by the trace operator. That the

operation tr(D) results in ∇ •U is shown now:

∇ •U = tr(D) . (8.9)

The demonstration is very simple:

tr(D) = tr

(
1

2

[
∇⊗U + (∇⊗U)T

])
=

1

2

[
2
∂ux
∂x

+ 2
∂uy
∂y

+ 2
∂uz
∂z

]
= ∇ •U . (8.10)

The divergence operator is evaluated by equation (1.16).



Chapter 9

Turbulence Modeling

In this chapter we focus on turbulent flow fields and the Reynolds-Averaging approach which was

introduced by Osborne Reynolds. First we will investigate into different averaging approaches.

Then we are going to derive the incompressible mass and momentum equation to show the closure

problem. After that, we discuss some hypothesis that are used to get rid of the closure problem.

That lead to the derivative of the Reynolds stress equation. The outcome of this equation is

the analyze of the analogies to the Cauchy stress tensor and the derivation of the turbulent

kinetic energy. Finally, we discuss the main problem if we want to average the compressible mass,

momentum and energy equation and introduce the Favre averaging concept. The main literature

that is used in this chapter is Ferziger and Perić [2008], Bird et al. [1960], Wilcox [1994].

9.1 Reynolds-Averaging

The investigation into flow fields are generally turbulent and hence, it is a challenging task to

resolve the flow with all details – in other words, with all physics. Observing an arbitrary flow

field, figure 9.1, we can analyze that the flow has a deterministic character. That means, the flow

is chaotic and can be prescribed using a time independent mean value φ̄ and its fluctuation φ′

that is oscillating around the mean value. This behavior is valid for each quantity we focus on like

ux, uy, uz, T, h, c and so on; for figure 9.1, φ would be the velocity u (in one direction) and could

be expressed as:

φ(t, x) = φ̄(x) + φ′(t, x) . (9.1)

Osborne Reynolds introduced several averaging concepts that are presented now:

• Time averaging ,

• Spacial averaging ,

• Ensemble averaging .

The time averaging method can be used for a statistic stationary turbulent flow (left figure

of 9.1). Defining the instantaneous flow variable by φ(t, x) and the time averaged one by φ̄(x)T,

the concept is defined by:

φ̄(x)T = lim
T→∞

1

T

∫ t+T

t

φ(t, x)dt . (9.2)
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In order to get good results, T should be chosen large enough compared to the time scale of the

fluctuation φ′. That is the reason why we are interested in the case when T goes to ∞. As we

observe in the figure and in the equation, the averaged value is no longer time depended.

The spacial averaging method is appropriate for homogeneous turbulent flows. This yields

to a uniform turbulence in all space directions. Here we average over the volume. Renaming the

averaged quantity to φ̄(x)V, we can write:

φ̄(x)V = lim
V→∞

1

V

∫ ∫ ∫
φ(t, x)dV . (9.3)

The ensemble averaging method is the most general method. Think about a series of

measurement with the number of N identical experiments where φn(t, x) = φ(t, x) at the nth

series. The concept can be defined as follows; the averaged value is denoted by φ̄(t, x)E:

φ̄(t, x)E = lim
N→∞

1

N

N∑
n=1

φn(t, x) . (9.4)

For turbulent flow fields that are stationary and homogeneous, all three concepts are similar and

lead to the same result. This is also known as the ergodic hypothesis.
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Figure 9.1: Averaging of a statistic stationary (left) and statistic non-stationary flow (right).

The averaging method that we choose for the further investigation is the time averaging

method. The reason for that is based on the fact that things can be described easy and clear. Let

us focus on the left part of figure 9.1 first. By replacing the instantaneous variable in equation

(9.2) by the definition (9.1), we get:

φ̄(x) = lim
T→∞

1

T

∫ t+T

t

[
φ̄(x) + φ′(t, x)

]
dt . (9.5)

We observe that the time averaging of the mean and fluctuation quantity leads to the mean

quantity again. Thus we can show, that the time average of an already averaged mean quantity
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is the mean quantity again:

φ̄(x) = lim
T→∞

1

T

∫ t+T

t

φ̄(x)dt . (9.6)

In addition we can see that the time averaging of the fluctuation is zero. To demonstrate that, we

use equation (9.1) and replace the mean quantity on the RHS of equation by (9.6):

lim
T→∞

1

T

∫ t+T

t

φ′(t, x)dt = lim
T→∞

1

T

∫ t+T

t

[
φ(t, x)− φ̄(x)

]
dt

= lim
T→∞

1

T

∫ t+T

t

φ(t, x)dt− lim
T→∞

1

T

∫ t+T

t

φ̄(x)dt

= lim
T→∞

1

T

∫ t+T

t

[
φ̄(x) + φ′(t, x)

]
dt− lim

T→∞

1

T

∫ t+T

t

φ̄(x)dt

= φ̄(x)− φ̄(x) = 0 . (9.7)

Some remarks of the validity of this method can be found in Wilcox [1994].

If we think about flows where the mean value of the instantaneous quantity is changing during

time (non-stationary flows, figure 9.1; right), we have to modify equation (9.1) and (9.2) to:

φ(t, x) = φ̄(t, x) + φ′(t, x) , (9.8)

φ̄(t, x) = lim
T→∞

1

T

∫ t+T

t

φ(t, x)dt . (9.9)

Some remarks and limits to equation (9.9) are given in Wilcox [1994].

Correlation for the Reynolds-Averaging

For the derivations of the Reynolds-Averaged conservation equations, we need some mathematic

rules. For now we will use an overline to indicate that we use the Reynolds time-averaging concept

instead of writing the integrals.

Linear Terms

Applying the average method (9.9) to linear terms lead to linear averaged terms. To demonstrate

this, we will use two linear functions f(t, x) and g(t, x):

f(t, x) =
1

T

∫ t+T

t

f(t, x)dt =
1

T

∫ t+T

t

[
f̄(t, x) + f ′(t, x)

]
dt

= f̄(t, x)︸ ︷︷ ︸
f̄(t,x)

+ f ′(t, x)︸ ︷︷ ︸
=0

= f̄(t, x)

g(t, x) =
1

T

∫ t+T

t

g(t, x)dt =
1

T

∫ t+T

t

[
ḡ(t, x) + g′(t, x)

]
dt

= ḡ(t, x)︸ ︷︷ ︸
¯̄g(t,x)

+ g′(t, x)︸ ︷︷ ︸
=0

= ḡ(t, x)
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Note: The result can be time dependent or not. This behavior is related to the problems we are

looking at. For stationary problems we will end up with f̄(x), ḡ(x), whereas for non-stationary

problems we get the terms we derived above.

If we have the sum of two linear terms f(t, x) + g(t, x), we get:

f(t, x) + g(t, x) =
1

T

∫ t+T

t

[f(t, x) + g(t, x)] dt

=
1

T

∫ t+T

t

f(t, x)dt+
1

T

∫ t+T

t

g(t, x)dt

=
1

T

∫ t+T

t

[
f̄(t, x) + f ′(t, x)

]
dt+

1

T

∫ t+T

t

[
ḡ(t, x) + g′(t, x)

]
dt

= f̄(t, x) +����f ′(t, x) + ḡ(t, x) +���g′(t, x)

= f̄(t, x) + ḡ(t, x) . (9.10)

Averaging linear terms end up with the same linear terms but now with the mean quantities. The

fluctuation terms will vanish based on the proof we did above.

Non-Linear Terms

If we focus on non-linear terms like f(t, x)g(t, x), we produce new additional terms during the

averaging procedure. To demonstrate this, we will use the above term and average it. What we

get is:

f(t, x)g(t, x) =
1

T

∫ t+T

t

[f(t, x)g(t, x)] dt

=
1

T

∫ t+T

t

[{
f̄(t, x) + f ′(t, x)

}{
ḡ(t, x) + g′(t, x)

}]
dt

=
1

T

∫ t+T

t

[
f̄(t, x)ḡ(t, x) + f̄(t, x)g′(t, x)

+f ′(t, x)ḡ(t, x) + f ′(t, x)g′(t, x)
]

dt

= f̄(t, x)ḡ(t, x) +������
f̄(t, x)g′(t, x)

+������
f ′(t, x)ḡ(t, x) + f ′(t, x)g′(t, x) . (9.11)

Rewriting the whole equation, we get:

f(t, x)g(t, x) = f̄(t, x)ḡ(t, x) + f ′(t, x)g′(t, x)︸ ︷︷ ︸
additional terms

(9.12)

The reason why the second and third term cancels out is due to the fact that the fluctuation

is linear in this terms and hence equation (9.7) is valid. For the last term, there is no reason for

the product of the fluctuations to vanish.
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Constants

Finally, the Reynolds time-averaging concept does not affect constant quantities. Defining an

arbitrary constant a, we get:

af(t, x) =
1

T

∫ t+T

t

af(t, x)dt

= a
1

T

∫ t+T

t

[
f̄(t, x) + f ′(t, x)

]
dt

= af̄(t, x) + a����f ′(t, x)

= af̄(t, x) . (9.13)

9.2 Reynolds Time-Averaged Equations

The Navier-Stokes equations give us the possibility to resolve each vortex and hence all flow

phenomena. Applying the equations to turbulent flow fields is a hard and challenging topic that

requires extreme fine meshes and time steps and lead to high computational costs. Furthermore,

engineers are commonly only interested in some averaged values and on some special physics.

Hence, there is no need to resolve all details. Thus, we use the Reynolds-Averaging concept to

simplify the flow equations; in other words, the whole turbulence behavior is approximated with

models.

Considering incompressibility, the Reynolds time-averaged equations can be derived relatively

easily compared to compressible flow fields. This will be discussed using the mass conservation

equation now.

9.2.1 Incompressible Mass Conservation Equation

The start point for the derivation is the compressible mass conservation equation (2.12) in the

form of Cartesian coordinates:

∂ρ

∂t
+
∂(ρux)

∂x
+
∂(ρuy)

∂y
+
∂(ρuz)

∂z
= 0 . (9.14)

Assuming incompressibility of the fluid, we are allowed to put the density out of the derivatives;

it is obvious that the time derivative will vanish and we end up with:

ρ
∂ux
∂x

+ ρ
∂uy
∂y

+ ρ
∂uz
∂z

= 0 . (9.15)

Replacing the values ui by the assumption (9.1),

ρ
∂(ūx + u′x)

∂x
+ ρ

∂(ūy + u′y)

∂y
+ ρ

∂(ūz + u′z)

∂z
= 0 , (9.16)

and apply the Reynolds time-average concept,

ρ
∂(ūx + u′x)

∂x
+ ρ

∂(ūy + u′y)

∂y
+ ρ

∂(ūz + u′z)

∂z
= 0 , (9.17)
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we get the time-averaged incompressible mass conservation equation:

ρ
∂ūx
∂x

+ ρ
∂ūy
∂y

+ ρ
∂ūz
∂z

= ρ∇ • Ū = 0 . (9.18)

Of course we are allowed to divide the whole equation by the density.

9.2.2 Compressible Mass Conservation Equation

Doing the same average procedure with the compressible mass conservation equation lead to a

more complex form because we also have to consider the density as a varying quantity. If follows:

∂ρ

∂t
+
∂(ρux)

∂x
+
∂(ρuy)

∂y
+
∂(ρuz)

∂z
= 0 , (9.19)

∂(ρ̄+ ρ′)

∂t
+
∂ [(ρ̄+ ρ′)(ūx + u′x)]

∂x
+
∂
[
(ρ̄+ ρ′)(ūy + u′y)

]
∂y

+
∂ [(ρ̄+ ρ′)(ūz + u′z)]

∂z
= 0 , (9.20)

∂(ρ̄+ ρ′)

∂t
+
∂ [(ρ̄+ ρ′)(ūx + u′x)]

∂x
+
∂
[
(ρ̄+ ρ′)(ūy + u′y)

]
∂y

+
∂ [(ρ̄+ ρ′)(ūz + u′z)]

∂z
= 0 , (9.21)

∂ρ̄

∂t
+
∂(ρ̄ūx +�

�ρ̄u′x +��ρ′ūx + ρ′u′x)

∂x
+
∂(ρ̄ūy +��ρ̄u

′
y +��ρ′ūy + ρ′u′y)

∂y

+
∂(ρ̄ūz +��ρ̄u

′
z +��ρ′ūz + ρ′u′z)

∂z
= 0 , (9.22)

∂ρ̄

∂t
+
∂(ρ̄ūx + ρ′u′x)

∂x
+
∂(ρ̄ūy + ρ′u′y)

∂y
+
∂(ρ̄ūz + ρ′u′z)

∂z
= 0 , (9.23)

∂ρ̄

∂t
+

∂

∂xi
(ρ̄ūi + ρ′u′i) = 0 . (9.24)

Introducing a vector that contains the fluctuations of the velocities u′x, u
′
y, u
′
z,

U′ =

u
′
x

u′y

u′z

 , (9.25)

we can rewrite the Reynolds time-averaged compressible mass conservation equation in vector

notation:
∂ρ̄

∂t
+∇ •

(
ρ̄Ū + ρ′U′

)
= 0 . (9.26)

Due to the fact that we have two quantities that have to be averaged, we get non-linear terms,

that lead to new unknown ρ′u′i. Due to this behavior, we will investigate into the incompressible
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flows fields first. Averaging the compressible equations will be discussed in section 9.13.

9.2.3 Incompressible Momentum Equation

The derivation of the time-averaged x-component of the momentum equation will be discussed

now. For the derivation, we will use equation (5.7) and assume incompressibility of the fluid. For

the y and z components, the equations (5.8) and (5.9) have to be used. Due to the fact that the

derivations are identical, we only give the final equation for y and z without all steps. The x

component is now analyzed and averaged in detail.

x-Component of Momentum

The incompressible momentum equation for the x-component is given by:

ρ
∂

∂t
ux =−

(
ρ
∂

∂x
uxux + ρ

∂

∂y
uyux + ρ

∂

∂z
uzux

)
−
{
∂

∂x

[
−2µ

∂ux
∂x

]
+

∂

∂y

[
−µ
(
∂ux
∂y

+
∂uy
∂x

)]
+

∂

∂z

[
−µ
(
∂uz
∂x

+
∂ux
∂z

)]}
− ∂p

∂x
+ ρgx .

(9.27)

This is the start point for the procedure. The first step is to replace the velocity quantities by

equation (9.1) and apply the Reynolds time-averaging concept. For clearance, we will examine

each term separately. Starting with the term on the LHS, we get:

ρ
∂

∂t
(ūx + u′x) = ρ

∂

∂t
ūx . (9.28)

The first term on the RHS ends up as:

−
(
ρ
∂

∂x
(ūx + u′x)(ūx + u′x) + ρ

∂

∂y
(ūy + u′y)(ūx + u′x) + ρ

∂

∂z
(ūt + u′t)(ūx + u′x)

)
.

To simplify the terms, we focus on each term separately. Therefore we get:

ρ
∂

∂x
(ūx + u′x)(ūx + u′x) = ρ

∂

∂x

[
ūxūx +���ūxu′x +���u′xūx + u′xu′x

]
= ρ

∂

∂x
(ūxūx) + ρ

∂

∂x
(u′xu′x) , (9.29)

ρ
∂

∂y
(ūy + u′y)(ūx + u′x) = ρ

∂

∂y

[
ūyūx +���ūyu′x +���u′yūx + u′yu′x

]
= ρ

∂

∂y
ρ(ūyūx) + ρ

∂

∂y
(u′yu′x) , (9.30)

ρ
∂

∂z
(ūz + u′z)(ūx + u′x) = ρ

∂

∂z

[
ūzūx +���ūzu′x +���u′zūx + u′zu′x

]
= ρ

∂

∂z
ρ(ūzūx) + ρ

∂

∂z
(u′zu′x) . (9.31)
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Finally, the first term on the RHS can be written as:

−
(
ρ
∂

∂x
(ūxūx) + ρ

∂

∂x
(u′xu′x) + ρ

∂

∂y
(ūyūx)

+ρ
∂

∂y
(u′yu′x) + ρ

∂

∂z
(ūzūx) + ρ

∂

∂z
(u′zu′x)

)
.

After sorting the terms, we end up with:

−
(
ρ
∂

∂x
(ūxūx) + ρ

∂

∂y
(ūyūx) + ρ

∂

∂z
(ūzūx)

)
︸ ︷︷ ︸

identical convective terms

−
(
ρ
∂

∂x
(u′xu′x) + ρ

∂

∂y
(u′yu′x) + ρ

∂

∂z
(u′zu′x)

)
︸ ︷︷ ︸

additonal terms; Reynolds−Stress

.

The second term on the RHS of equation (9.27) will be discussed now. The term is given by:

−
{

∂

∂x

[
−2µ

∂ux
∂x

]
︸ ︷︷ ︸

Term 1

+
∂

∂y

[
−µ
(
∂ux
∂y

+
∂uy
∂x

)]
︸ ︷︷ ︸

Term 2

+
∂

∂z

[
−µ
(
∂uz
∂x

+
∂ux
∂z

)]
︸ ︷︷ ︸

Term 3

}

By analyzing term one to term three step by step, we get for the first one the following expression:

∂

∂x

[
−2µ

∂(ūx + u′x)

∂x

]
=

∂

∂x

[
−2µ

∂ūx
∂x

]
, (9.32)

for the second one this expression:

∂

∂y

[
−µ
(
∂(ūx + u′x)

∂y
+
∂(ūy + u′y)

∂x

)]
=

∂

∂y

[
−µ
(
∂ūx
∂y

+
∂ūy
∂x

)]
, (9.33)

and for the third term this one:

∂

∂z

[
−µ
(
∂(ūz + u′z)

∂x
+
∂(ūx + u′x)

∂z

)]
=

∂

∂z

[
−µ
(
∂ūz
∂x

+
∂ūx
∂z

)]
. (9.34)

Finally, after combining all three parts, we get the following expression for the second term on the

RHS of equation (9.27):

−
{
∂

∂x

[
−2µ

∂ūx
∂x

]
+

∂

∂y

[
−µ
(
∂ūx
∂y

+
∂ūy
∂x

)]
+

∂

∂z

[
−µ
(
∂ūz
∂x

+
∂ūx
∂z

)]}
.

After we analyzed the first two terms, we will investigate into the last two terms on the RHS

of equation (9.27). It follows:

− ∂p

∂x
+ ρgx = −∂(p̄+ p′)

∂x
+ ρgx = − ∂p̄

∂x
+ ρgx . (9.35)

Now we can rewrite the x-component of the momentum equation (9.27) as Reynolds time-averaged
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x-momentum equation:

ρ
∂

∂t
ūx = −

(
ρ
∂

∂x
ūxūx + ρ

∂

∂y
ūyūx + ρ

∂

∂z
ūzūx

)
−
(
ρ
∂

∂x
(u′xu′x) + ρ

∂

∂y
(u′yu′x) + ρ

∂

∂z
(u′zu′x)

)
−
{
∂

∂x

[
−2µ

∂ūx
∂x

]
+

∂

∂y

[
−µ
(
∂ūx
∂y

+
∂ūy
∂x

)]
+
∂

∂z

[
−µ
(
∂ūz
∂x

+
∂ūx
∂z

)]}
− ∂p̄

∂x
+ ρgx

. (9.36)

If we apply the same procedure to the y and z component of the momentum equation, we get

the Reynolds time-averaged momentum equation for the y and z components respectively. These

three Reynolds time-averaged equations are then called Reynolds-Averaged-Navier-Stokes equa-

tions (RANS).

y-Component of Momentum

ρ
∂

∂t
ūy =−

(
ρ
∂

∂x
ūxūy + ρ

∂

∂y
ūyūy + ρ

∂

∂z
ūzūy

)
−
(
ρ
∂

∂x
(u′xu′y) + ρ

∂

∂y
(u′yu′y) + ρ

∂

∂z
(u′zu′y)

)
−
{
∂

∂y

[
−2µ

∂ūy
∂y

]
+

∂

∂x

[
−µ
(
∂ūx
∂y

+
∂ūy
∂x

)]
+
∂

∂z

[
−µ
(
∂ūz
∂y

+
∂ūy
∂z

)]}
− ∂p̄

∂y
+ ρgy

. (9.37)

z-Component of Momentum

ρ
∂

∂t
ūz =−

(
ρ
∂

∂x
ūxūz + ρ

∂

∂y
ūyūz + ρ

∂

∂z
ūzūz

)
−
(
ρ
∂

∂x
(u′xu′z) + ρ

∂

∂y
(u′yu′z) + ρ

∂

∂z
(u′zu′z)

)
−
{
∂

∂z

[
−2µ

∂ūz
∂z

]
+

∂

∂x

[
−µ
(
∂ūx
∂z

+
∂ūz
∂x

)]
+
∂

∂y

[
−µ
(
∂ūy
∂z

+
∂ūz
∂y

)]}
− ∂p̄

∂z
+ ρgz

(9.38)

If we are using the vector of fluctuations U′ (9.25), the definition of the deformation (strain)

rate tensor D (5.11) and taking the convective terms to the LHS, we can rewrite the averaged

momentum equation in vector form as:

ρ
∂

∂t
Ū + ρ∇ • (Ū⊗ Ū) = ∇ •

(
2µD̄

)︸ ︷︷ ︸
τ̄

−∇p̄+ ρg

︸ ︷︷ ︸
Same as equation (5.13) (with ρ=const.)

−ρ∇ • (U′ ⊗U′)︸ ︷︷ ︸
Reynolds−Stresses σ̄t

. (9.39)
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D̄ defines the Reynolds-Averaged (mean) deformation rate tensor, τ̄ the mean shear-rate tensor

and the last term the Reynolds-Stresses, denoted as Reynolds-Stress tensor σ̄t; in many literatures

we will find the greek symbol τ̄ t to express the Reynolds-Stress tensor – this is omitted here because

otherwise we are not able to show the analogies between the real stress tensor σ (Cauchy stress

tensor) and the Reynolds-Stress tensor σt clearly.

The Reynolds-Stress tensor σ̄t is defined as:

σ̄t = −ρu′iu′j =

−ρu′xu′x − ρu′yu′x − ρu′zu′x
−ρu′xu′y − ρu′yu′y − ρu′zu′y
−ρu′xu′z − ρu′yu′z − ρu′zu′z

 =

σ̄txx σ̄tyx σ̄tzx

σ̄txy σ̄tyy σ̄tzy

σ̄txz σ̄tyz σ̄tzz

 . (9.40)

After we introduced the Reynolds-Stress tensor, we can rewrite the momentum equation in a more

general form:

ρ
∂

∂t
Ū + ρ∇ • (Ū⊗ Ū) = ∇ • τ̄ −∇p̄+ ρg +∇ • σ̄t . (9.41)

Finally, we will use the relation between the Cauchy stress tensor, the shear-rate tensor and the

pressure (6.7). Hence, we end up with the following equation:

ρ
∂

∂t
Ū + ρ∇ • (Ū⊗ Ū) = ∇ • σ̄ + ρg +∇ • σ̄t . (9.42)

In section 2.2 we already showed and discussed that the vector form results in the Cartesian one.

In the above equation there is only one term left that we should transformed to demonstrate that

each term of the vector form represents the corresponding term in the Cartesian equation. Hence,

we will only investigate into that one. The Reynolds-Stress term can be rewritten as:

− ρ∇ • (U′ ⊗U′) = −ρ


∂
∂x
∂
∂y
∂
∂z

 •

u′x

u′y

u′z

⊗
u
′
x

u′y

u′z


 (9.43)

= −ρ


∂
∂x
∂
∂y
∂
∂z

 •

u′xu′x u′xu′y u′xu′z

u′yu′x u′yu′y u′yu′z

u′zu′x u′zu′y u′zu′z


 (9.44)

=


−
[
ρ ∂
∂x

(
u′xu′x

)
+ ρ ∂

∂y

(
u′xu′y

)
+ ρ ∂

∂z

(
u′xu′z

)]
−
[
ρ ∂
∂x

(
u′yu′x

)
+ ρ ∂

∂x

(
u′yu′y

)
+ ρ ∂

∂x

(
u′yu′z

)]
−
[
ρ ∂
∂y

(
u′zu′x

)
+ ρ ∂

∂x

(
u′zu′y

)
+ ρ ∂

∂z

(
u′zu′z

)]
 !

=


of x−mom.

of y −mom.

of z −mom.

(9.45)

As we can see – and already knew –, the terms are equal. In most literatures we will find the

Reynolds time-averaged momentum equations in Cartesian form using the Einsteins summation

convention. This lead to the following equation:

ρ
∂

∂t
ūi + ρ

∂

∂xj
(ūiūj) =

∂τ̄ij
∂xj

− ∂p̄

∂xi
+ ρgi − ρ

∂

∂xj

(
u′iu
′
j

)
. (9.46)

Furthermore, sometimes the Reynolds-Stress term is put into the convective term on the LHS.
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Hence, we get:

ρ
∂

∂t
ūi + ρ

∂

∂xj

(
ūiūj + u′iu

′
j

)
=
∂τ̄ij
∂xj

− ∂p̄

∂xi
+ ρgi . (9.47)

The derivation of the Reynolds-Averaged momentum equations are done. The boxed equations

above are known as Reynolds-Averaged-Navier-Stokes equations (RANS).

Note: It should be obvious that we can put the density in or out of the derivatives (it is a

constant if we use the assumption of incompressibility). Hence, this formulation is also valid:

∂

∂t
ρūi +

∂

∂xj

(
ρūiūj + ρu′iu

′
j

)
=
∂τ̄ij
∂xj

− ∂p̄

∂xi
+ ρgi . (9.48)

In addition it is clear, that we are allowed to divide the equations by the density ρ. For that,

we just have to be sure to have the right quantities for the pressure and the dynamic viscosity µ.

The dynamic viscosity will become the kinematic viscosity ν and the pressure is divided by the

density. Furthermore we can think about the gravitational acceleration term ρgi. If the density is

constant, this term gets constant and can be neglected because it will not change the momentum

in any case. If we still want to have a buoyancy term within the incompressible equations, we

need to use some models like the Boussinesq approximation.

9.2.4 The (Incompressible) General Conservation Equation

After we derived the RANS equations, the derivation of all other conserved equations like the

enthalpy, temperature or species equation can be done with the same procedure but is not demon-

strated now. As we already know, we could use a general conservation equation to derive other

equations. Therefore, we will derive the Reynolds time-averaged governing conserved equation

(3.1) for incompressible fluids without any source terms. Hence, the starting point is:

ρ
∂

∂t
φ︸ ︷︷ ︸

time accumulation

= −ρ ∇ • (Uφ)︸ ︷︷ ︸
convective transport

+ ∇ • (D∇φ)︸ ︷︷ ︸
diffusive transport

. (9.49)

To show the transformation to the Reynolds time-averaged equation, we will switch this equation

into the Cartesian form first by using the mathematics (1.16) and assume that the diffusion

coefficient D represents a vector; like different thermal diffusivity coefficients in the three space

directions (otherwise the derivation get simplified and is not worth do show):

ρ
∂

∂t
φ = −

(
ρ
∂

∂x
(uxφ) + ρ

∂

∂y
(uyφ) + ρ

∂

∂z
(uzφ)

)
+

∂

∂x

(
Dx

∂φ

∂x

)
+

∂

∂y

(
Dy

∂φ

∂y

)
+

∂

∂z

(
Dz

∂φ

∂z

)
. (9.50)
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The next step is to use the expression from equation (9.1) and apply it to φ, ux, uy and uz – keep

in mind that D are constant values and are not influenced by the averaging procedure. It follows:

ρ
∂

∂t
(φ̄+ φ′) = −

(
ρ
∂

∂x

[
(ūx + u′x)(φ̄+ φ′)

]
+ ρ

∂

∂y

[
(ūy + u′y)(φ̄+ φ′)

]
+ ρ

∂

∂z

[
(ūz + u′z)(φ̄+ φ′)

])
+

∂

∂x

(
Dx

∂

∂x
(φ̄+ φ′)

)
+

∂

∂y

(
Dy

∂

∂y
(φ̄+ φ′)

)
+

∂

∂z

(
Dz

∂

∂z
(φ̄+ φ′)

)
. (9.51)

To discuss the Reynolds-Averaging procedure, we will analyze each term separately of equation

(9.51). Therefore, the time term results in:

ρ
∂

∂t
(φ̄+ φ′) = ρ

∂

∂t
φ̄ . (9.52)

The first term on the RHS,

−
(
ρ
∂

∂x

[
(ūx + u′x)(φ̄+ φ′)

]
+ ρ

∂

∂y

[
(ūy + u′y)(φ̄+ φ′)

]
+ρ

∂

∂z

[
(ūz + u′z)(φ̄+ φ′)

])
,

will be split to enable analyzing term by term. It follows:

ρ
∂

∂x

[
(ūx + u′x)(φ̄+ φ′)

]
= ρ

∂

∂x

[
(ūxφ̄+ ūxφ′ + u′xφ̄+ u′xφ′)

]
= ρ

∂

∂x
(ūxφ̄) +

∂

∂x
(ρu′xφ′) , (9.53)

ρ
∂

∂y

[
(ūy + u′y)(φ̄+ φ′)

]
= ρ

∂

∂y

[
(ūyφ̄+ ūyφ′ + u′yφ̄+ u′yφ′)

]
= ρ

∂

∂y
(ūyφ̄) + ρ

∂

∂y
(u′yφ′) , (9.54)

ρ
∂

∂z

[
(ūz + u′z)(φ̄+ φ′)

]
= ρ

∂

∂z

[
(ūzφ̄+ ūzφ′ + u′zφ̄+ u′zφ′)

]
= ρ

∂

∂z
(ūzφ̄) + ρ

∂

∂z
(u′zφ′) . (9.55)

Hence, the first term on the RHS after sorting is:

−
(
ρ
∂

∂x
(ūxφ̄) + ρ

∂

∂y
(ūyφ̄) + ρ

∂

∂z
(ūzφ̄) + ρ

∂

∂x
(u′xφ′) + ρ

∂

∂y
(u′yφ′) + ρ

∂

∂z
(u′zφ′)

)
.

The second, third and fourth term on the RHS will end up as:

∂

∂x

(
Dx

∂

∂x
(φ̄+ φ′)

)
=

∂

∂x

(
Dx

∂φ̄

∂x

)
, (9.56)
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∂

∂y

(
Dy

∂

∂y
(φ̄+ φ′)

)
=

∂

∂y

(
Dy

∂φ̄

∂y

)
, (9.57)

∂

∂z

(
Dz

∂

∂z
(φ̄+ φ′)

)
=

∂

∂z

(
Dz

∂φ̄

∂z

)
. (9.58)

To sum up, the general Reynolds-Averaged conservation equation can be written as:

ρ
∂

∂t
φ̄ = −

(
ρ
∂

∂x
(ρūxφ̄) + ρ

∂

∂y
(ūyφ̄) + ρ

∂

∂z
(ūzφ̄)

)
+

∂

∂x

(
Dx

∂φ̄

∂x

)
+

∂

∂y

(
Dy

∂φ̄

∂y

)
+

∂

∂z

(
Dz

∂φ̄

∂z

)
−
(
ρ
∂

∂x
(u′xφ′) + ρ

∂

∂y
(u′yφ′) + ρ

∂

∂z
(u′zφ′)

)
︸ ︷︷ ︸

turbulent scalar flux

, (9.59)

and is given in vector form by:

ρ
∂

∂t
φ̄ = −ρ∇ •

(
Ūφ̄
)

+∇ •
(
D∇φ̄

)
︸ ︷︷ ︸

same as before

− ρ∇ • (U′φ′)︸ ︷︷ ︸
turbulent scalar flux

. (9.60)

Equation (9.60) allows us to derive each Reynolds-Averaged conservation equation by replacing φ

with the quantity of interest (analogy to chapter 3).

As we already realized, after deriving the Reynolds-Averaged momentum equations, we get

the same equations but with additional terms. These additional terms are called Reynolds-

Stresses for the momentum equations and are named additional turbulent scalar flux for all

other quantities. Finally – and if we want –, we can put the density inside the derivations and we

end up with:

∂

∂t
ρφ̄ = −∇ •

(
ρŪφ̄

)
+∇ •

(
D∇φ̄

)
︸ ︷︷ ︸

same as before

− ∇ • (ρU′φ′)︸ ︷︷ ︸
turbulent scalar flux

. (9.61)

Manipulating the equations should be familiar now. Thus, we can put the convective and the

turbulent scalar flux terms together. In addition we add the arbitrary source term of φ. The

resulting general Reynolds-Averaged conservation equation is then written as:

∂

∂t
ρφ̄+∇ •

(
ρŪφ̄+ ρU′φ′

)
= ∇ •

(
D∇φ̄

)
+ Sφ . (9.62)

9.3 The Closure Problem

The Reynolds-Averaged procedure lead to the problem, that we create additional unknown quan-

tities and no further equations. In other words, the terms −ρu′iu′j and −ρu′iφ′ are not known and

cannot be calculated. Hence, the set of equations are not enough to close our problem and we

cannot solve our system. This is known as closure problem. Therefore, we need approximations

that correlate the unknown with known quantities.

Till today this problem is still not solved and we do not have a set of equations to get
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rid of the closure problem and therefore, we are forced to use approximations, if we use the

Reynolds time-averaging procedure. The equations that are introduced by authors to get rid of

the closure problem are known as turbulence models. Within this assumptions, we try to correlate

the unknown quantities with known one.

For the Reynolds-Stresses and turbulent scalar fluxes we can use several theories that try

approximate the unknown terms. The most popular methods are the Boussinesq’s eddy viscosity,

the Prandtl’s mixing length or the Von-Kármán’s similarity hypothesis. Further information

about these theories (concept of higher viscosity) can be found in Ferziger and Perić [2008], Bird

et al. [1960], Wilcox [1994]. Keywords: energy cascade, higher viscosity concept, eddy viscosity,

dissipation and turbulent viscosity.

9.4 Boussinesq Eddy Viscosity

The most used hypothesis is the theory postulated by Joseph Boussinesq that simply relates the

turbulence of a flow to a higher fluid viscosity. The thought behind is as follows: If we have a

higher turbulence flow, the flow gets more chaotic and we get a lot of vortexes that can transport

for example heat in addition to the already existing transport phenomena. Therefore, it is clear

and of humans nature to say, that we could achieve that, if we increase the diffusion coefficient

(the viscosity in the momentum equation) and keep the rest as it is. In other words, the molecular

viscosity is increased by the so called eddy or turbulent viscosity. This assumption give us the

possibility to model the smallest vortexes by using correlations and approximations and only

resolve the larger eddies.

It is also possible to use the higher viscosity to describe or characterize the dissipation of kinetic

energy (per unit mass) of the turbulence into heat – the higher the viscosity of the fluid, the higher

the shearing and therefore we get higher mixing rates (additional transport) but although a larger

dissipation of the kinetic energy into heat. Hence, we also could describe the theory vice versa:

the higher the eddy viscosity, the higher the turbulence of the flow field.

Joseph Boussinesq related the Reynold-Stresses −ρu′iu′j to the mean values of the velocities

and the kinetic energy of the turbulence k as:

− ρu′iu′j︸ ︷︷ ︸
σ̄t

= µt

(
∂ūi
∂xj

+
∂ūj
∂xi
− 2

3

(
∇ • Ū

)
δij

)
︸ ︷︷ ︸

2D̄− 2
3

tr(D̄)I

− 2

3
ρδijk︸ ︷︷ ︸
2
3
ρIk

, (9.63)

σ̄t = 2µtD̄−
2

3
µt tr(D̄)I− 2

3
ρIk , (9.64)

σ̄t = τ̄ t −
2

3
ρIk . (9.65)

In the equations above, we can see, that the underlined term is identical to the shear-rate tensor

τ̄ , if we set the bulk viscosity κ to zero; cf. equation (5.14) with the difference that we use

the turbulent eddy viscosity µt instead of the molecular viscosity µ, hence we mark it with the

subscript t (τ̄ t). In addition we can say that the turbulent Reynolds-Stress tensor σ̄t equals to

the shear-rate tensor τ̄ t and an additional term 2
3
ρδijk. This term is necessary to guarantee the

proper trace of the Reynolds-stress tensor σ̄t as mentioned by Ferziger and Perić [2008] and Wilcox
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[1994].

One may think about the term 2
3
ρδijk now. Where does it come from and why is this term

necessary? As mentioned by Ferziger and Perić [2008] and Wilcox [1994], this term has to be added

to get the proper trace of the Reynolds-stress tensor. To understand the meaning of the additional

term, we simply have to take the trace of the Reynolds-Stress tensor σ̄t and the shear-rate tensor

τ̄ t.

For that, we need to know the definition of the kinetic energy of the turbulence:

k =
1

2
u′iu
′
i =

1

2

(
u′xu′x + u′yu′y + u′zu′z

)
. (9.66)

New we need to take the trace of the Reynolds-Stress tensor σ̄t (9.40). It follows:

tr(σ̄t) = tr(−ρu′iu′j) = tr


−ρu′xu′x − ρu′yu′x − ρu′zu′x
−ρu′xu′y − ρu′yu′y − ρu′zu′y
−ρu′xu′z − ρu′yu′z − ρu′zu′z


 , (9.67)

= (−ρu′xu′x) + (−ρu′yu′y) + (−ρu′zu′z)︸ ︷︷ ︸
= −2ρk

. (9.68)

The result that we get is the following: The trace of the Reynolds-Stress tensor is twice the density

multiplied by the kinetic energy of the turbulence, −2ρk, and can be validated by substituting k

by its definition (9.66):

− 2ρk = −2ρ

[
1

2

(
u′xu′x + u′yu′y + u′zu′z

)]
= (−ρu′xu′x) + (−ρu′yu′y) + (−ρu′zu′z)︸ ︷︷ ︸

tr(σ̄t)

. (9.69)

We demonstrated, that the trace of the Reynolds-Stress σ̄t tensor has to be equal to −2ρk.

Therefore, the trace of the RHS of equation (9.65) has to be equal to −2ρk too. Otherwise the

equation would not be correct in the mathematical point of view. Thus we get:

tr(σ̄t) = tr

(
τ̄ t −

2

3
ρIk

)
= −2ρk , (9.70)

tr(σ̄t) = tr

(
2µtD̄−

2

3
µt tr(D̄)I− 2

3
ρIk

)
= −2ρk . (9.71)

If we use the definition of the deformation rate tensor (5.11) with respect to the mean quantities
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and apply the transformation (8.9), it follows:

tr(σ̄t) = tr

(
2µt

{
1

2

[
∇⊗ Ū +

(
∇⊗ Ū

)T ]}
︸ ︷︷ ︸

Term 1

− 2

3
µt

(
∇ • Ū

)
I︸ ︷︷ ︸

Term 2

− 2

3
ρIk︸ ︷︷ ︸

Term 3

)
,

= tr


µt




∂
∂x
∂
∂y
∂
∂z

⊗
ūxūy
ūz

+




∂
∂x
∂
∂y
∂
∂z

⊗
ūxūy
ūz



T


︸ ︷︷ ︸
Term 1

−2

3
µt


∂ūx
∂x

+
∂ūy
∂y

+ ∂ūz
∂z

0 0

0 ∂ūx
∂x

+
∂ūy
∂y

+ ∂ūz
∂z

0

0 0 ∂ūx
∂x

+
∂ūy
∂y

+ ∂ūz
∂z


︸ ︷︷ ︸

Term 2

−

−
2
3
ρk 0 0

0 − 2
3
ρk 0

0 0 − 2
3
ρk


︸ ︷︷ ︸

Term 3

 . (9.72)

Applying the dyadic product rule (1.11) to term 1, add both matrices and multiply everything by

the eddy viscosity, we end up with term 1 as:µt
∂ux
∂x

+ µt
∂ux
∂x

µt
∂uy
∂x

+ µt
∂ux
∂y

µt
∂uz
∂x

+ µt
∂ux
∂z

µt
∂ux
∂y

+ µt
∂uy
∂x

µt
∂uy
∂y

+ µt
∂uy
∂y

µt
∂uz
∂y

+ µt
∂uy
∂z

µt
∂ux
∂z

+ µt
∂uz
∂x

µt
∂uy
∂z

+ µt
∂uz
∂y

µt
∂uz
∂z

+ µt
∂uz
∂z

 .

Due to the fact that we are only interested in the main diagonal elements (trace), we just consider

these terms for now. The matrices of term 1, term 2 and term 3 have to be summed up and the

trace operator has to be applied. It follows:

tr

(
τ̄ t −

2

3
ρIk

)
= 2µt

[
∂ūx
∂x

+
∂ūy
∂y

+
∂ūz
∂z

]
︸ ︷︷ ︸

Term 1

− 3
2

3
µt

[
∂ūx
∂x

+
∂ūy
∂y

+
∂ūz
∂z

]
︸ ︷︷ ︸

Term 2︸ ︷︷ ︸
= 0

− 3
2

3
ρk︸ ︷︷ ︸

Term 3

= −2ρk . (9.73)

The result of the trace operator to the Boussinesq hypothesis is −2ρk. Hence, the trace of the

RHS and LHS of equation (9.63) is equal. If we would remove the term − 2
3
ρδijk on the RHS of

equation (9.63), the trace of the RHS would not be equal to the trace of the Reynolds-Stress tensor

σ̄t and hence, the Boussinesq eddy viscosity assumption would be wrong because τ̄ t is traceless,

cf. chapter 6.
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Forums Discussion

It is worth to mention that there were a lot of people asking about the term − 2
3
ρδijk in public

forums. Even I made wrong statements at the beginning in a way that within the OpenFOAMr

toolbox, this term is neglected. Finally, we cannot find this term in OpenFOAMr which is related

to a very simple correlation that is given below. For those who are interested in the discussion on

cfd-online.com, you can go to: www.cfd-online.com/Forums/openfoam-solving/58214-calculating-divdevreff.

html.

Keep in mind that this thread can cause confusion because only the last posts are correct and

as Gerhard Holzinger mentioned, the term is put into a modified pressure and is not neglected in

OpenFOAMr. How this is working, is given on the next page.

Analogy to the Cauchy Stress Tensor, Shear-Rate Tensor and Pressure

Comparing the last derived equations with those of chapter 6, it is obvious that there are similar-

ities. Analyzing equation (6.7) and (9.65), we can evaluate the same kind of behavior:

σ︸︷︷︸
(Cauchy)−Stress tensor

= τ︸︷︷︸
shear−rate tensor (traceless)

+ −pI︸︷︷︸
pressure (=trace)

, (9.74)

σ̄t︸︷︷︸
(Reynolds)−Stress tensor

= τ̄ t︸︷︷︸
(RA)−shear−rate tensor (traceless)

+ −2

3
ρIk︸ ︷︷ ︸

add. term (=trace)

, (9.75)

A︸︷︷︸
complete matrix

= Adev︸ ︷︷ ︸
deviatoric part (traceless)

+ Ahyd︸ ︷︷ ︸
hydro. part (=trace)

. (9.76)

If we compare the terms, we can observe that the term − 2
3
ρk seems to behave like a pressure. Using

equation (9.42) and replacing the Reynolds-Averaged Cauchy stress tensor σ̄ and the Reynolds-

Stress tensor σ̄t by their definitions (6.7) and (9.65), we can highlight the similarities better:

ρ
∂

∂t
Ū + ρ∇ • (Ū⊗ Ū) = ∇ • τ̄ +∇ • (−p̄I)︸ ︷︷ ︸

∇•σ̄

+ρg +∇ • τ̄ t +∇ •
(
−2

3
ρkI

)
︸ ︷︷ ︸

∇•σ̄t

, (9.77)

ρ
∂

∂t
Ū + ρ∇ • (Ū⊗ Ū) = ∇ • τ̄ +∇ • τ̄ t + ρg +∇ • (−p̄I) +∇ •

(
−2

3
ρkI

)
, (9.78)

ρ
∂

∂t
Ū + ρ∇ • (Ū⊗ Ū) = ∇ • (τ̄ + τ̄ t) + ρg−∇ •

(
p̄I +

2

3
ρkI︸ ︷︷ ︸

= p∗I

)
. (9.79)

Introducing a modified pressure p∗ = p̄ + 2
3
ρk and replacing the shear-rate tensors by their defi-

nitions (for the shear-rate tensor τ̄ , we mark the molecular viscosity µ by the subscript l), we get

the following equation:

ρ
∂

∂t
Ū + ρ∇ • (Ū⊗ Ū) = ∇ •

([
2µlD̄−

2

3
µl

(
∇ • Ū

)
I

]
+

[
2µtD̄−

2

3
µt

(
∇ • Ū

)
I

])
+ ρg−∇ • (p∗I) , (9.80)

www.cfd-online.com/Forums/openfoam-solving/58214-calculating-divdevreff.html
www.cfd-online.com/Forums/openfoam-solving/58214-calculating-divdevreff.html
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ρ
∂

∂t
Ū + ρ∇ • (Ū⊗ Ū) = ∇ •

([
µl

{
¯2D− 2

3

(
∇ • Ū

)
I

}]
+

[
µt

{
¯2D− 2

3

(
∇ • Ū

)
I

}])
+ ρg−∇ • (p∗I) , (9.81)

∂

∂t
ρŪ +∇ • (ρŪ⊗ Ū) = ∇ •

(
[µl + µt]

{
¯2D− 2

3

(
∇ • Ū

)
I

})
+ ρg−∇ • (p∗I) . (9.82)

Introducing an effective viscosity µeff that is simply the sum of the molecular and turbulent (eddy)

viscosity:

µeff = µl + µt , (9.83)

we can rewrite the Reynolds-Averaged-Navier-Stokes equations, that include the effective viscosity

and a modified pressure field p∗ as:

∂

∂t
ρŪ +∇ • (ρŪ⊗ Ū) = ∇ •

(
µeff

{
¯2D− 2

3

(
∇ • Ū

)
I

} )
+ ρg−∇ • (p∗I) , (9.84)

∂

∂t
ρŪ +∇ • (ρŪ⊗ Ū) = ∇ •

(
2µeffD̄− 2

3
µeff

(
∇ • Ū

)
I︸ ︷︷ ︸

τ̄eff

)
+ ρg−∇ • (p∗I) . (9.85)

After introducing the effective shear-rate tensor τ̄ eff , we can simplify the equation to:

∂

∂t
ρŪ +∇ • (ρŪ⊗ Ū) = ∇ • τ̄ eff −∇ • (p∗I) + ρg . (9.86)

It is clear that this equation is similar to equation (2.26). The differences within the equations

are, that we use a modified pressure p∗ and a new viscosity µeff field; it should be obvious that

we have mean quantities here.

After that, the only unknown in that equation is the eddy viscosity µt. If we introduce

an effective Cauchy-Stress tensor σ̄eff , we are able to build the general form of the momentum

equation. It follows:

σ̄eff = τ̄ eff − p∗I , (9.87)

∂

∂t
ρŪ +∇ • (ρŪ⊗ Ū) = ∇ • σ̄eff + ρg . (9.88)

Note: If we solve the incompressible Reynolds-Averaged Navier-Stokes equations, we are not

calculating the real pressure field p. Instead we have the modified pressure p∗. For most of the

problems this is not a big deal and we do not have to consider this. Only if we are using some

modified equations in OpenFOAMr where we need the real pressure, we have to recalculate the

real pressure field by subtracting the kinetic part.

The reason for introducing the Boussinesq eddy hypothesis and the advantages are given in

the next section.
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9.5 Eddy Viscosity Approximation

The Boussinesq theory allows us to eliminate the Reynolds-Stresses with known quantities. How-

ever, we get new unknown quantities like the eddy viscosity µt and the kinetic energy of the

turbulence k.

Wilcox [1994] listed plenty of theories and models that relates the eddy viscosity to known

quantities. Commonly the turbulent (eddy) viscosity is characterized with the kinetic energy of

the turbulence k and a characteristic length L. Furthermore, the kinetic energy of the turbulence

can be related to a velocity q =
√
k. This two values enable us to derive a correlation between the

velocity q (kinetic energy of the turbulence k), the characteristic length L and the eddy viscosity.

The assumption that was invented is:

µt ≈ CµρqL . (9.89)

The parameter Cµ is a dimensionless constant. The challenge now is to relate the characteristic

length L and the velocity q to known quantities. This is done by using turbulence models.

9.6 Algebraic Models

At the beginning of computational fluid dynamics the power of personal and super computers were

restricted and therefore it was necessary to have simple models that approximate the Reynolds-

Stresses −ρu′iu′j . These models commonly use the introduced Boussinesq eddy viscosity theory.

The estimation of the eddy viscosity µt is done by using algebraic expressions. A few models are

described in Wilcox [1994] chapter 3. Algebraic models can be used for simple flow patterns but

hence the flow is getting complex (imagine geometries in combustion, or even flow separation),

these models will fail and produces non-physical values for the eddy viscosity.

9.7 Turbulence Energy Equation Models

The most common approximations for the Reynolds-Stresses (finally to calculate the characteristic

length scale L and the kinetic energy of the turbulence k) are called turbulence energy equation

models. There are one-equation and two-equation models. Due to the fact that we need the

values of the velocity q (=
√
k) and the characteristic length L, it is logical to use two-equation

models, where each equation models one parameter. Therefore, we focus only on this kind of

approximations for now.

In general the velocity q is calculated using the kinetic energy of the turbulence k. To evaluate

k we can make use of the already know relation between the trace of the Reynolds-Stress tensor

σ̄t and k, cf. (9.70). To get the equation of the kinetic energy of the turbulence k, we simply have

to take the trace of the Reynolds-Stress equation. How we get this equations are discussed in the

following sections.

9.8 Incompressible Reynolds-Stress Equation

To derive the Reynolds-Stress equation, we will use the Navier-Stokes equation (5.10) with bulk

viscosity equals to zero, no source terms and incompressibility (dilatation term is zero). The start
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point for the derivation is:

ρ
∂ui
∂t

+ ρ
∂

∂xj
(ujui) =

∂

∂xj

[
2µ

{
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)}]
− ∂p

∂xi
. (9.90)

To make life easier, we will split the convective term by using the product rule. Hence, we can

remove one term due to the continuity equation (non-conserved equation). We get:

ρ
∂

∂xj
(ujui) = ρuj

∂ui
∂xj

+
�
�

��
ρui

∂uj
∂xj︸ ︷︷ ︸

continuity

. (9.91)

Replacing the convective term with the new form, put everything to the LHS and introduce

the Navier-Stokes operator N , we get:

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj
− ∂

∂xj

[
2µ

{
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)}]
+

∂p

∂xi
= N (ui) . (9.92)

It is clear that the Navier-Stokes operator N has to be equal to zero and thus we can write:

N (ui) = 0 . (9.93)

With the new information, we are able to derive the Reynolds-Stress equation. In order to form this

equation we multiply the Navier-Stokes operator by the fluctuation with respect to the different

space directions:

u′iN (uj) + u′jN (ui) = 0 . (9.94)

The next step is to apply the expression (9.1) to the Navier-Stokes operator N (ui) and average the

whole equation by using the Reynolds time-averaging method (9.9). This leads to the following

equation:

u′iN (ūj + u′j) + u′jN (ūi + u′i) = 0 . (9.95)

This equation has to be evaluated to get the Reynolds-Stress equation. The derivation itself is

not a big deal but we have to have the feeling for different behaviors of the terms and hence, we

need to be familiar with the mathematics. In the following, we will give a brief summary of the

operations and relations and present the Reynolds-Stress equation without any derivation. The

full derivation of this tensor equation is given in the appendix in section 14.1.

Operations and relations

For the derivation of the Reynolds-Stress equation we need to build the following tensor equation

with formula (9.95):

u′xN (ūx + u′x) + u′yN (ūz + u′z) + u′xN (ūy + u′y) + u′yN (ūx + u′x)

+u′xN (ūz + u′z) + u′yN (ūy + u′y) + u′yN (ūx + u′x) + u′zN (ūz + u′z)

+u′yN (ūy + u′y) + u′zN (ūx + u′x) + u′yN (ūz + u′z) + u′zN (ūy + u′y)

+u′zN (ūx + u′x) + u′xN (ūz + u′z) + u′zN (ūy + u′y) + u′xN (ūx + u′x)

+u′zN (ūz + u′z) + u′xN (ūy + u′y) = 0 .
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For the derivation we further use the following relations, rules and tricks:

• Reynolds time-averaged terms that are linear in the fluctuation are zero ,

• The derivative
∂u′i
∂xi

= 0 ,

• Product rule (1.2) ,

• Adding and subtracting terms to be able to use the product rule; g(x) = g(x)+f(x)−f(x) .

If we use these assumptions, we can derive the Reynolds-Stress equation. The result of the

derivation procedure is a more or less complex equation. Hence, the Reynolds-Stress equation is

given as:

∂σ̄tji

∂t
+ ūk

∂σ̄tij

∂uk
= −σ̄tjk

∂ūi
∂xk
− σ̄tik

∂ūj
∂xk

+
∂

∂xk

(
ν
∂σ̄tij

∂xk
+ Cijk

)
+ εij −Πij . (9.96)

After knowing the Reynolds-Stress equation, we are able to derive the equation for the kinetic

energy of the turbulence k. The Reynolds-Stress equation also gives insight into the nature of the

turbulent stresses and can be used to understand the turbulence in more detail or it can be used

for further investigations in deriving more accurate turbulence models.

9.9 The Incompressible Kinetic Energy Equation

The derivation of the kinetic energy equation of the turbulence (per unit mass) for incompressible

flows is simple after knowing the Reynolds-Stress equation due to the fact of the relation given

by equation (9.66). In order to get the equation, we have to take the trace of equation (9.96). It

follows:

tr

{
∂σ̄tji

∂t
+ ūk

∂σ̄tij

∂uk

}
= tr

{
−σ̄tjk

∂ūi
∂xk
− σ̄tik

∂ūj
∂xk

+
∂

∂xk

(
ν
∂σ̄tij

∂xk
+ Cijk

)
+ εij −Πij

}
. (9.97)

After applying the trace operator to each term we get:

For the time derivation we get:

tr

{
∂σ̄tji

∂t

}
=
∂σ̄txx

∂t
+
∂σ̄tyy

∂t
+
∂σ̄tzz

∂t
= −ρ∂u

′
xu′x
∂t

− ρ
∂u′yu′y
∂t

− ρ∂u
′
zu′z
∂t

= −ρ ∂
∂t

(u′xu′x + u′yu′y + u′zu′z)︸ ︷︷ ︸
(9.66)→2k

= −2ρ
∂k

∂t
. (9.98)
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If we apply the trace operator to the convective term, we get:

tr

{
ūk
∂σ̄tij

∂uk

}
= ūk

∂σ̄txx

∂uk
+ ūk

∂σ̄tyy

∂uk
+ ūk

∂σ̄tzz

∂uk

= −ρūk
∂u′xu′x
∂uk

− ρūk
∂u′yu′y
∂uk

− ρūk
∂u′zu′z
∂uk

= −ρūk
∂

∂uk
(u′xu′x + u′yu′y + u′zu′z) = −2ρūk

∂k

∂uk
. (9.99)

The first and second term of equation (9.96) lead to:

tr

{
−σ̄tjk

∂ūi
∂xk
− σ̄tik

∂ūj
∂xk

}
= −σ̄tik

∂ūi
∂xk
− σ̄tik

∂ūi
∂xk

= 2ρu′iu
′
k

∂ūi
∂xk

. (9.100)

The first part of the third term results in:

tr

{
∂

∂xk

(
ν
∂σ̄tij

∂xk

)}
=

∂

∂xk

(
ν
∂σ̄txx

∂xk

)
+

∂

∂xk

(
ν
∂σ̄tyy

∂xk

)
+

∂

∂xk

(
ν
∂σ̄tzz

∂xk

)
= − ∂

∂xk

(
ρν
∂u′xu′x
∂xk

)
− ∂

∂xk

(
ρν
∂u′xu′x
∂xk

)
− ∂

∂xk

(
ρν
∂u′xu′x
∂xk

)
= − ∂

∂xk

(
µ
∂

∂xk
(u′xu′x + u′yu′y + u′zu′z)

)
= −2

∂

∂xk

(
µ
∂k

∂xk

)
. (9.101)

The second part of the third term, Cijk, results in:

tr

{
∂

∂xk
ρu′iu

′
ju
′
k +

∂

∂xk

[
p′u′jδik + p′u′iδjk

]}
=

∂

∂xj
ρu′ju

′
iu
′
i + 2

∂

∂xj
p′u′j . (9.102)

The evaluation of the second term that includes the pressure can be done in an easy way. It is

simply twice the trace of one of the terms. The first term is a third rank tensor T3 and the trace

results in the underlined term on the RHS. This can be demonstrated by analyzing the first entries

of the third rank tensor:

tr
(
ρu′xu

′
ju
′
k

)
= tr

 ρu′xu′xu′x ρu′xu′xu′y ρu′xu′xu′z

ρu′xu′yu′x ρu′xu′yu′y ρu′xu′yu′z

ρu′xu′zu′x ρu′xu′zu′y ρu′xu′zu′z

 = ρu′xu
′
iu
′
i . (9.103)

In a similar way to Cijk, the term εij can be manipulated. Thus, we get:

tr

{
2µ
∂u′i
∂xk

∂u′j
∂xk

}
= 2µ

∂u′i
∂xk

∂u′i
∂xk

. (9.104)
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The last term of equation (9.96), Πij , is zero due to the fact that
∂u′i
∂xi

= 0:

tr

{
p′
[
∂u′i
∂xj

+
∂u′j
∂xi

]}
= p′

[
�
��∂u
′
x

∂x
+
�
��∂u
′
x

∂x

]

+ p′

[
�
��∂u
′
z

∂y
+
�
��

∂u′y
∂y

]
+ p′

[
�

��∂u
′
z

∂z
+
�

��∂u
′
z

∂z

]
= 0 . (9.105)

If we sum up all terms, we get the kinetic energy equation of the turbulence, k, for incompressible

fluids:

− 2ρ
∂k

∂t
− 2ρūk

∂k

∂uk
= 2ρu′iu

′
k

∂ūi
∂xk
− 2

∂

∂xk

(
µ
∂k

∂xk

)
+

∂

∂xk
ρu′ju

′
iu
′
i + 2

∂

∂xk
p′u′i + 2µ

∂u′i
∂xk

∂u′i
∂xk

. (9.106)

Finally, we divide the whole equation by −2 to get the final form of the incompressible kinetic

energy equation:

ρ
∂k

∂t
+ ρūk

∂k

∂uk
= −ρu′iu′k

∂ūi
∂xk︸ ︷︷ ︸

Pk

+
∂

∂xk

(
µ
∂k

∂xk

)

− ∂

∂xk

ρ

2
u′ju
′
iu
′
i −

∂

∂xj
p′u′j︸ ︷︷ ︸

turbulent diffusion

− µ
∂u′i
∂xk

∂u′i
∂xk︸ ︷︷ ︸

dissipation ε

. (9.107)

If we merge the terms that include the turbulent diffusion, use the term Pk, that denotes the

production rate of the kinetic energy and the acronym ε, we end up with the common kinetic

energy equation as:

ρ
∂k

∂t
+ ρūk

∂k

∂uk
=

∂

∂xk

(
µ
∂k

∂xk

)
+ Pk −

∂

∂xk

[ρ
2
u′ju
′
iu
′
i + p′u′j

]
− ε . (9.108)

The production rate and turbulent diffusion term has to be modeled. For the turbulent diffusion

we use the assumption that the diffusion is based on the gradients:

−
[ρ

2
u′ju
′
iu
′
i + p′u′j

]
≈ µt

Prt

∂k

∂xj
. (9.109)

Here, Prt denotes the turbulent Prandtl number and is assumed to be one. In the literature we it

is also common to denote the turbulent Prandtl number by σk. Due to the fact that we use sigma

to describe any kind of stress tensor, we avoid the usage of another sigma quantity here.

The production rate is modeled with the assumption given by equation (9.63) but with the

difference, that we do not need the term −2ρk; Recall: This term was just added to equilibrate

both sides. Hence, the production rate term is given by:

Pk = −ρu′iu′j
∂ūi
∂xj
≈ µt

(
∂ūi
∂xj

+
∂ūj
∂xi

)
∂ūi
∂xj

. (9.110)
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The dissipation ε, that describe the transfer of the turbulence into internal energy (a better

description given in the next section), is coupled to a characteristic length scale L.

Recall: After we derived the RANS equations, we figured out that we need to calculate

the Reynolds-Stress tensor σ̄t. To get this value we introduced the Boussinesq eddy viscosity

hypothesis and related the eddy viscosity µt to a characteristic length scale L and a velocity q. Up

to now, we eliminated one unknown (q =
√
k) by using the kinetic energy k but we also introduced

a new unknown quantity, the dissipation ε. Thus, we still have two unknown, the length scale L

and the dissipation ε. The good thing is, both quantities can be related.

9.10 The Relation between ε and L

The most common equation that is used to estimate the length scale L is based on the observation

that the dissipation phenomena can also be observed in the energy transport and thus in its

equation. In fluid flows which are in a so called turbulent equilibrium, it is possible to derive a

relation between the kinetic energy k, the length scale L and the dissipation ε:

ε ≈ k
3
2

L
. (9.111)

The idea behind this relation is the so called energy cascade for high turbulent flow fields

(high Reynolds numbers). The concept can be described as follows: The kinetic energy of the

turbulence is transformed from big scale eddies to small scale eddies. If we reach the smallest

scale (this vortexes are named Kolmogorov vortexes), the viscous effect will transfer the energy of

motion into internal energy. This phenomena is called dissipation.

9.11 The Equation for the Dissipation Rate ε

To calculate the length scale L and close the equation for the turbulent energy k, we need the

equation for the dissipation ε. This equation can be derived by using the Navier-Stokes equation

(like we did for the Reynolds-Stress equation) but due to the fact that most terms on the RHS

have to be modeled, we should describe this equation more like a model than an exact equation.

Hence, the complete derivation is not shown. In general we are using the following equation for

the dissipation ε:

ρ
∂ε

∂t
+ ρūj

∂ε

∂xj
= Cε1Pk

ε

k
− ρCε2

ε2

k
+

∂

∂xj

(
µt

σε

∂ε

∂xj

)
(9.112)

As we can see, the whole right side is more like a playground of parameters and assumptions

than a real fundamental equation. But the equation allows us to estimate the dissipation ε. The

quantity can be used for the kinetic energy equation and allows us to estimate the length scale L

and hence, we are able to approximate the the eddy viscosity µt.

Now we can rewrite the Boussinesq eddy hypothesis (9.89) with the new quantities:

µt = ρCµ
√
kL = ρCµ

√
k

√
k3

ε
= ρCµ

k2

ε
. (9.113)
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The model parameters of the equations above are:

Cµ = 0.09 , Cε1 = 1.44 , Cε2 = 1.92 , σε = 1.3 .

9.12 Coupling of the Parameters

As we could see in the last sections, the turbulence modeling is a complex topic. The easiest

equations for the turbulence modeling were derived. Furthermore, we observed that all parameters

are coupled. The kinetic energy of the turbulence k, the length scale L, the dissipation ε and the

eddy viscosity µt.

There are a lot of more considerations that have to be taken into account if turbulence modeling

is used. Just think about the turbulence behavior close to the walls compared to the far field.

Another example would be the turbulence modeling of flow separation. The section about the

turbulence model gave us a feeling that the topic about turbulent flows are extreme complex. A

lot of research was done and till today the turbulence has still to be modeled and can only be

applied and resolved with all details for a couple of problems.

In the literature we will find different equations that give reasonable results for a special kind

of problem(s). Good references for further investigations into the turbulence modeling are the

books of Ferziger and Perić [2008], Bird et al. [1960] and Wilcox [1994].

9.13 Turbulence Modeling for Compressible Fluids

As already discussed during the Reynolds averaging procedure for the incompressible mass conser-

vation equation, the varying density has to be taken into account during for compressible fluids.

Therefore, we get:

ρ = ρ̄+ ρ′ . (9.114)

This lead to more unknown terms that will make the problem even more complex; compare the

already derived Reynolds time-averaged compressible mass conservation equation (9.24) which is

given again:

∂ρ̄

∂t
+

∂

∂xi
(ρ̄ūi + ρ′u′i) = 0 . (9.115)

Here we need approximations for the correlation between ρ′ and u′i, that are vanishing for incom-

pressible fluids. If we go further and think about the momentum equations, we can imagine, that

things get even worse.

To get rid of the additional correlation between ρ′ and u′i, we introduce a mathematical method

suggested by Favre. This concept is based on mathematics and therefore not physical correct.

What we do is simple. We introduce a mass-averaged velocity field ũi, that is defined as:

ũi =
1

ρ̄
lim
T→∞

∫ t+T

t

ρ(t, x)ui(t, x)dτ . (9.116)

Here, ρ̄ denotes the Reynolds time-averaged density and the tilde above the velocity ui marks
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the quantity to be Favre averaged instead of Reynolds averaged. In terms of the Reynolds time-

averaging procedure we are allowed to say:

ρ̄ũi = ρui . (9.117)

To show what happens here, we will expand the RHS:

ρ̄ũi = (ρ̄+ ρ′)(ūi + u′i) = ρ̄ūi +�
�ρ̄u′i +��ρ′ūi + ρ′u′i = ρ̄ūi + ρ′u′i . (9.118)

If we use this expression for equation (9.115), we end up with:

∂ρ̄

∂t
+

∂

∂xi
(ρ̄ũi) = 0 . (9.119)

This equation looks just similar to the laminar mass conservation or the Reynolds time-averaged

equation. Wilcox [1994] explained this kind of averaging as follows:

�What we have done is treat the momentum per unit volume, ρui, as the depended variable

rather than the velocity. This is a sensible thing to do from a physical point of view,..�.

If you are interested into that kind of averaging, a lot of information can be found in Wilcox

[1994] and Bird et al. [1960].

Note: The key argument to use the Favre averaging procedure is to simplify the averaging

procedure and get rid of additional correlations that have to be modeled. Hence, we end up

with the same set of equations for incompressible turbulent flow fields but now we use the Favre-

weighted quantities.



Chapter 10

Calculation of the Shear-Rate Tensor in

OpenFOAMr

In this chapter we will discuss the implementation of the calculation of the shear-rate tensor τ ,

τ̄ t or τ̃ t; real, Reynolds-averaged or Favre-averaged quantities. In OpenFOAMr we calculate the

shear-rate tensor by calling the functions divDevReff or divDevRhoReff.

The following discussion is based on the OpenFOAMr 2.3.1. Be prepared that the code can

look different for other versions. If you are asking yourself for that reason, you have to understand

the concept of hacking. For those who are interested you can read the book of Erickson [2014].

10.1 The Inco. Shear-Rate Tensor, divDevReff

For incompressible fluids, the momentum equation that is going to be constructed in the UEqn.H

file looks equal to the following code (snippet from pimpleFoam):

1 tmp <fvVectorMatrix > UEqn

2 (

3 fvm::ddt(U) (I)

4 + fvm::div(phi , U) (II)

5 + MRF.DDt(U) (III)

6 + turbulence ->divDevReff(U) (IV)

7 ==

8 fvOptions(U) (V)

9 );

Listing 10.1: $FOAM SOLVERS/incompressible/pimpleFoam/UEqn.H

Lets analyze the code. First of all we observe different terms. The first one is the time derivation

(I). The second term is the convective term (II). After that, some additional correction term due

to MRF (III) is added. The next one is the the shear-rate tensor (IV) and finally we have a term

(V) that handles additional sources within the fvOptions dictionary.

For now we will focus on the term (IV) turbulence->divDevReff(U). First of all, we will

discuss the meaning of the name divDevReff:

∇ • τ = ∇ • σdev (10.1)
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The divergence of the shear-rate tensor is equal to the divergence of the deviatoric part of the

stress tensor σ. The R comes from the Reynolds-Average approach. An additional Rho defines if

we are using a density based or non density based solver. Finally we are interested in the effective

transport which includes laminar and turbulent transport phenomena. Therefore, we get the name

divDevReff for incompressible and divDevRhoReff for compressible fluids.

The analyze of the function is very simple and can be checked with the code source guide

named Doxygen.

The object named turbulence, which is based on the general turbulenceModel class and further

derived from the incompressibleTurbulenceModel class, will call the function divDevReff(U). The

corresponding function that is called and implemented is:

1 tmp <fvVectorMatrix > laminar :: divDevReff(volVectorField& U) const

2 {

3 return

4 (

5 - fvm:: laplacian(nuEff(), U)

6 - fvc::div(nuEff ()*dev(T(fvc::grad(U))))

7 );

8 }

Listing 10.2: .../turbulenceModel/incompressible/RAS/laminar/laminar.C

First, we can see that we have the kinematic viscosity included, which indicates incompressible

equations. The second thing that can be observed is the fact, that we calculate one part implicit

(fvm) and another part explicit (fvc). Furthermore, a new function named dev() is called.
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The new function dev() is implemented as:

1 template <class Cmpt >

2 inline Tensor <Cmpt > dev(const Tensor <Cmpt >& t)

3 {

4 return t - SphericalTensor <Cmpt >:: oneThirdsI*tr(t);

5 }

Listing 10.3: $FOAM SRC/OpenFOAM/primitives/Tensor/TensorI.H

Analyzing the C++ Functions

Starting with the function dev(), we can see that the function simply calculates the deviatoric

part of the matrix, cf. (1.27). Therefore, we can write:

Adev = A−Ahyd = A− 1

3
tr(A)I . (10.2)

In addition, the function dev() needs an argument. The argument is the transposed matrix that

we get, if we build the dyadic product of the two vectors, Nabla ∇ and the velocity vector U.

Thus, we can write:

A =
[
grad(Ū)

]T
=
[
∇⊗ Ū

]T
. (10.3)

If we express the C++ code with the expressions above, we can rewrite the code into a mathematic

form. Hence, the first term of the divDevReff function can be written as:

− fvm :: laplacian(νeff , Ū) = −∇ •
(
νeff(∇⊗ Ū)

)
, (10.4)

the second term is equal to:

− fvc :: div(νeff ∗ dev(T(fvc :: grad(Ū)))) = −∇ •
(
νeff ∗ dev((∇⊗ Ū)T )

)
, (10.5)

and the dev-function is similar to:

dev((∇⊗ Ū)T ) = (∇⊗ Ū)T − 1

3
tr((∇⊗ Ū)T )I . (10.6)

Finally, we are able to put everything together and end up with:

−∇ • τ̄ eff = −∇ •
(
νeff(∇⊗ Ū)

)
−∇ •

(
νeff

[
(∇⊗ Ū)T − 1

3
tr((∇⊗ Ū)T )I

])
. (10.7)

After we push the first term into the second one:

−∇ • τ̄ eff = −∇ •
(
νeff(∇⊗ Ū) + νeff(∇⊗ Ū)T − 1

3
νeff tr((∇⊗ Ū)T )I

)
, (10.8)

and rewrite the last term by using the relation (8.9), we end up with:

−∇ • τ̄ eff = −∇ •
(
νeff(∇⊗ Ū) + νeff(∇⊗ Ū)T − 1

3
νeff ����(∇ • Ū)︸ ︷︷ ︸

continuity

I

)
. (10.9)
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The last term is zero due to the continuity equation. Therefore, the effective shear-rate tensor τ̄ eff

for incompressible fluids is calculated as:

−∇ • τ̄ eff = −∇ •
(
νeff(∇⊗ Ū) + νeff(∇⊗ Ū)T

)
︸ ︷︷ ︸

τ̄eff

= −∇ •
(

2νeff

[
1

2

{
(∇⊗ Ū) + (∇⊗ Ū)T

}]
︸ ︷︷ ︸

deformation rate tensor D̄

)
. (10.10)

As we demonstrated now, the calculation of the incompressible shear-rate tensor is correct im-

plemented into the version 2.3.1 because the derived equation is similar to equation (5.35). The

sign difference of the term corresponds to the position at the LHS in OpenFOAMr whereas in

equation (5.35) the shear-rate tensor stands on the RHS.

Stability

During the analyze of the function, we figured out that the term 1
3
νeff tr(∇⊗U) is kept. The reason

for that is based on numerics. The term simply stabilizes the calculation because the continuity

equation is never 100% zero. This is based on the discretization, interpolation and accuracy of

the machine.

In newer OpenFOAMr versions like 4.x, the incompressible solvers will call dev2() that is

normally used for compressible flows. The difference of dev2 and dev will be shown later and is

simple a difference of the factor two at some position of the code. However, due to the continuity

equation, we can cancel the additional term again and hence, the equation is also valid. If we are

using dev2() instead of dev() for incompressible solvers will lead to an even better stabilization

and convergence rate. This is the reason why it was introduced in OpenFOAMr 3.0.0.

10.2 The Compr. Shear-Rate Tensor, divDevRhoReff

If we focus on compressible fluids, the shear-rate tensor has a different formulation. The con-

structed momentum equation looks similar to the one we had for incompressible fluids but now we

have the density included and we call a new function named divDevRhoReff. The code snippet is

based on rhoPimpleFoam.

1 tmp <fvVectorMatrix > UEqn

2 (

3 fvm::ddt(rho , U) (I)

4 + fvm::div(phi , U) (II)

5 + MRF.DDt(rho , U) (III)

6 + turbulence ->divDevRhoReff(U) (IV)

7 ==

8 fvOptions(rho , U) (V)

9 );

Listing 10.4: $FOAM SOLVERS/compressible/rhoPimpleFoam/UEqn.H

As before, we have the time derivation (I), the convective (II), some additional correction due to

MRF (III), the shear-rate tensor (IV) and the term (V) that handles additional sources within the
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fvOptions dictionary.

For the analysis of the function, we proceed like before. First we investigate into the call of

the function turbulence->divDevRhoReff(U).

Note: The keyword Rho is now included in the name of the function. This indicates that we

calculate the shear-rate tensor based on the theory for compressible fluids. Thus, the dilatation

term is included due to expansion and compression phenomena which can be related to the non-

constant density.

The shear-rate tensor that is calculated for a compressible fluid is given below.

1 tmp <fvVectorMatrix > laminar :: divDevRhoReff(volVectorField& U) const

2 {

3 return

4 (

5 - fvm:: laplacian(muEff(), U)

6 - fvc::div(muEff()*dev2(T(fvc::grad(U))))

7 );

8 }

Listing 10.5: .../turbulenceModel/compressible/RAS/laminar/laminar.C

The function is similar to dev() but now we have the molecular instead of the kinematic viscosity

and call a new function named dev2. The code of the new function is presented below. It is

somehow calculating the deviatoric part of a tensor but subtraction twice the hydrostatic part

instead of once. The reason for that is obvious after we analyze the code snippet.

1 template <class Cmpt >

2 inline Tensor <Cmpt > dev2(const Tensor <Cmpt >& t)

3 {

4 return t - SphericalTensor <Cmpt >:: twoThirdsI*tr(t);

5 }

Listing 10.6: OpenFOAM/primitives/Tensor/TensorI.H

Analyzing the C++ Functions

The argument that is return by the function dev2() represents equation (1.27) with the already

mentioned difference that we subtract the hydrostatic part twice; twoThirdsI:

Adev = A− 2Ahyd = A− 2

3
tr(A)I (10.11)

The argument of the function dev2() is equal to the one we had in the incompressible case. Hence,

it can be evaluated by (10.3). Rewriting the C++ code into the different equations, we are able

to rewrite the first term as:

− fvm :: laplacian(µeff , Ũ) = −∇ •
(
µeff(∇⊗ Ũ)

)
, (10.12)

the second term to:

− fvc :: div(µeff ∗ dev2(T(fvc :: grad(Ũ)))) = −∇ •
(
µeff ∗ dev2((∇⊗ Ũ)T )

)
, (10.13)
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and the dev2-function like:

dev2((∇⊗ Ũ)T ) = (∇⊗ Ũ)T − 2

3
tr((∇⊗ Ũ)T )I (10.14)

After combining these terms, it follows:

−∇ • τ̃ eff = −∇ •
(
µeff(∇⊗ Ũ)

)
−∇ •

(
µeff

[
(∇⊗ Ũ)T − 2

3
tr((∇⊗ Ũ)T )I

])
. (10.15)

After we pushed the divergence operator out, we get:

−∇ • τ̃ eff = −∇ •
(
µeff(∇⊗ Ũ) + µeff

[
(∇⊗ Ũ)T − 2

3
tr((∇⊗ Ũ)T )I

])
. (10.16)

By eliminating the brackets inside, it follows:

−∇ • τ̃ eff = −∇ •
(
µeff∇⊗ Ũ + µeff(∇⊗ Ũ)T − 2

3
µeff tr((∇⊗ Ũ)T )I

)
, (10.17)

and finally, we get the known shear-rate tensor by using equation (8.9) as:

−∇ • τ̃ eff = −∇ •
(
µeff∇⊗ Ũ + µeff(∇⊗ Ũ)T − 2

3
µeff(∇ • Ũ)I

)
︸ ︷︷ ︸

effective shear−rate tensor τ̄eff

. (10.18)

To get a more familiar equation, we do some simple mathematics and end up with:

−∇ • τ̃ eff = −∇ •
(

2µeff

[
1

2

{
(∇⊗ Ũ) + (∇⊗ Ũ)T

}]
︸ ︷︷ ︸

deformation rate tensor D̃

−2

3
µeff(∇ • Ũ)I

)
. (10.19)

As we demonstrated, the calculation of the compressible shear-rate tensor is implemented in

OpenFOAMr correctly. The equation above is equal to the averaged shear-rate tensor τ̄ in

equation (9.85) with the difference that we use Favre averaged quantities here. As before, the

difference in the sign is based on to the fact that the term stands on the LHS in OpenFOAMr.

10.3 Influence of Turbulence Models

If we use a compressible based solver in OpenFOAMr and simulate a laminar flow pattern, the

momentum equation will not change based on the fact that it is hard coded. The question now

is, what happens if we do so (not use a turbulence model)?

As we saw in the chapters above, the equations for full resolved eddies, Reynolds-Averaged or

Favre-Averaged flow fields are identical. The only difference is related to the viscosity. Hence, if

we do not use a turbulence model, the contribution of the eddy viscosity µt is zero. It follows:

µeff = µl +��µt . (10.20)



Chapter 11

SIMPLE, PISO and PIMPLE algorithm

Solving the Navier-Stokes equations requires numerical techniques for solving the coupled pressure-

momentum system. This is done by the well known algorithms named: SIMPLE, PISO and PIMPLE.

The different algorithms are based on different problems and therefore, we will understand these

algorithms better after we introduced the difficulties that come into handy when we solve the

Navier-Stokes equations or any other coupled system. Further information about these algorithms

can be found in Ferziger and Perić [2008] and Moukalled et al. [2015].

Let us consider the general momentum equation (2.26) and apply the incompressibility char-

acter — the density is constant and can be taken out of the derivatives —, we get:

ρ
∂U

∂t
= −ρ∇ • (U⊗U)−∇ • τ −∇p+ ρg . (11.1)

Note: In the above equation we did not introduce the shear-rate tensor. That’s why the sign is

negative in this particular case.

Now, we divide the whole equation by the density ρ. Hence, τ has to be expressed by equation

(5.35) and thus it follows:

∂U

∂t
= −∇ • (U⊗U)−∇ • τ inco −∇

p

ρ
+ g . (11.2)

Based on the fact that the density is a constant, there is no need to solve any energy equation

and we only need to solve the momentum equation. As we can see, there are four unknown

quantities, the pressure p and the three velocity components denoted by U. However, one can

see that we have four unknowns and only three equations (momentum in x, y and z). Therefore,

we need an additional equation which is the mass conservation equation (2.13). Although, this

equation does not has the pressure included, we need some special techniques to solve the coupled

pressure-momentum system. This is also known as the pressure-momentum coupling problem.

The idea — to get rid of the problem — is to use the mass conservation equation somehow.

What we finally do, is to apply the divergence operator onto the momentum equation. After

doing a semi-discretization, that means, we only discretized the time derivative while the space

derivatives are kept in partial differential form, we can use the mass conservation equation to

eliminate terms and end up with the well known Poisson equation for the pressure p; derivation

is not shown in this book.

91
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Now we have an equation for the momentum and the pressure. In general these equations are

solved sequential. That means, that we solve for Ux while we keep all other variables constant. In

other words, we first solve the equation for Ux, then for Uy, then for Uz and then for p.

The strategy now is to find a pressure and momentum field that fulfill the mass conservation and

of course the case conditions related to the boundary conditions and time. The sequential solving

procedure is been achieved by using the aforementioned algorithms namely: PISO, SIMPLE and

PIMPLE. As a simple rule (not valid all the time), we can say:

• SIMPLE:= Semi-Implicit-Method-Of-Pressure-Linked-Equations.

In OpenFOAMr we are using this algorithm for steady-state analyzes.

• PISO:= Pressure-Implicit-of-Split-Operations.

In OpenFOAMr we are using this algorithm for transient calculation. The calculation is

limited in the time step based on the Courant number.

• PIMPLE:= Merged PISO–SIMPLE.

This algorithm combines both algorithms and allows us to use bigger time-steps (Co >> 1).

Note: There is a family of different algorithms available. For example, the SIMPLE algorithm

is not consistent. That means, that during the derivation of the pressure equation, we neglect

one term. Therefore, different investigations were done to calculate the missing term and are

known under the terms of SIMPLER, SIMPLEM, SIMPLEC and so on. A very good overview is given

in Moukalled et al. [2015].

11.1 The SIMPLE algorithm in OpenFOAMr

If we use any kind of SIMPLE based solver in OpenFOAMr, we do not have a time derivation.

A time derivation is normally a natural limiter for the solution. That means, for a special time

interval ∆t, the solution can only go on by this time step and not further. Based on the fact that

we do not have the time derivation within that algorithm, we are only interested in the steady-state

behavior and based on the missing natural limiter ∆t and the fact that the SIMPLE algorithm is not

consistent (missing term), we need to under-relax the equations to achieve stability. Otherwise,

the solver just blow up and gives a floating point exception (dividing by zero).

Furthermore, the time step ∆t should be always set to 1. Doing that, the time will indicate

the number of iterations that we did within the SIMPLE loop. Changing the time step to other

values will not influence the solution. It simply let us reach the pseudo end time faster or not. In

other word, we do more or less iterations. Of course, changing ∆t can affect the results but only

if we will do not reach the steady state solution.

For the SIMPLE algorithm it is very important to estimate the relaxation factors for the fields

and equations for good stability and fast convergence rate.

11.1.1 SIMPLEC in OpenFOAMr

In the release version 3.0.0, the SIMPLEC algorithm can be used in all SIMPLE and PIMPLE operating

algorithms. For that purpose, we have to add some special keyword to the SIMPLE or PIMPLE control
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dictionary in the fvSolutions file. Activating the SIMPLEC method can be done by adding the

following keyword (next side).



94 SIMPLE, PISO and PIMPLE algorithm

1 SIMPLE

2 {

3 consistent true;

4 }

5

6 PIMPLE

7 {

8 consistent true;

9 }

Listing 11.1: SIMPLE operating in SIMPLEC mode

As already mentioned in the previous section, the SIMPLEC algorithm include the missing pressure

term. The added character �C� stands for consistency.

Using the SIMPLEC method will require more iterations for each single segregated calculation

step but the convergence rate will increased. The release notes report a speed-up of three times.

Furthermore, larger values for the under-relaxation factors can be choosen.

Note: The consistency keyword can be added to the PIMPLE dictionary too, but will only

affect the algorithm, if we operate in the PIMPLE mode. Otherwise, this keyword will not affect

the numerical procedure. How to use the PIMPLE algorithm correct, will be discussed later.

11.2 The PISO algorithm in OpenFOAMr

The two main differences to the SIMPLE algorithm are the included time derivation term and the

consistency of the pressure-velocity coupling equation. Based on this two additional criteria, we

do not need to under-relax the fields and equations but need to fulfill a stability criterion. Based

on the simulation type, we have to make sure that the so called Courant number is not larger than

one.

The Courant number can be visualized as follows: If the dimensionless number is smaller than

one, the information from one cell can only reach the next neighbor cell within one time step.

Otherwise, the information can reach a second or third neighbor cell which is not allowed based

on some explicit aspects. Therefore, the Courant number has to be smaller than one. In general,

a small value has to be considered at the beginning of a simulation, which can then be increased

to some – case depended – value.

Co =
U∆t

∆x
. (11.3)

The Courant number depends on the local cell velocity U, the time step ∆t and the distant

between the cells ∆x. In OpenFOAMr, the calculation is based on the cell volume and not on

the distance ∆x. Based on formula (11.3), we can derive the following aspects:

• The higher the local cell velocity U, the larger the Courant number,

• The larger the time step ∆t, the larger the Courant number,

• The smaller the distance ∆x, the larger the Courant number.

The main aspect here is, that if we refine the mesh, increase the velocity or the time step, the

Courant number will increase. To fulfill the criteria in equation (11.3), the time step has to be

adjusted based on the mesh size and the velocity.
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Note: The criteria has to be fulfilled for each cell. That means, that one bad cell can limit

the whole simulation.

11.3 The PIMPLE algorithm in OpenFOAMr

The PIMPLE algorithm is one of the most used one if we have transient problems because it combines

the PISO and SIMPLE (SIMPLEC) one. The advantage is, that we can use larger Courant numbers

(Co >> 1) and therefore, the time step can be increased drastically.

The principal of the algorithm is as follows: Within one time step, we search a steady-state

solution with under-relaxation. After we found the solution, we go on in time. For this, we need

the so called outer correction loops, to ensure that explicit parts of the equations are converged.

After we reach a defined tolerance criterion within the steady-state calculation, we leave the outer

correction loop and move on in time. This is done till we reach the end time of the simulation.

Note: The PIMPLE algorithm in OpenFOAMr can also work in PISO mode, if we set the

nOuterCorrectors to one. The value of zero just ignores the whole pimple loop (no calculation).

This can be checked, if we start any PIMPLE solver. The output should be as follow:

1 Create mesh for time = 0

2

3 PIMPLE: Operating solver in PISO mode

Listing 11.2: The output of the pimple algorithm

11.4 The correct usage of the PIMPLE algorithm

The usage of the PIMPLE algorithm is explained and discussed within this section. First of all,

the settings that can be set for controlling the algorithm has to be written into the fvSolution

dictionary. Here, we need to define the algorithm control dictionary named PIMPLE.

1 PIMPLE

2 {

3 //- Settings that we can made

4 }

Listing 11.3: The control dictionary within the fvSolution file

The keyword has to be added to the fvSolution file, otherwise the solver will throw out an error.

Nevertheless, it is sufficient just to create an empty dictionary. If we do so, the code will use

default values based on the constructor of the class.

1 // * * * * * * * * * * * * * Constructors * * * * * * * * * * * //

2

3 Foam:: pimpleControl :: pimpleControl

4 (

5 fvMesh& mesh ,

6 const word& dictName

7 )

8 :

9 solutionControl(mesh , dictName),

10 nCorrPIMPLE_ (0),

11 nCorrPISO_ (0),
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12 corrPISO_ (0),

13 turbOnFinalIterOnly_(true),

14 converged_(false)

15 {

16 read();

Listing 11.4: The constructor of the pimpleControl class

As we can see, the constructor will initialize all values with zero first, and set two booleans. One to

true and the other one to false. After that, we go into the read function. Here, we will read the

PIMPLE dictionary in the fvSolution file. If there is no entry to read, the default values are set. For

the nOuterCorrectors a value of one is used. The same is valid for the nCorrectors. Finally the

turbOnFinalIterOnly is set to true. If that switch is turned on, we solve the turbulence equation

within each outer loop, otherwise we solve it only once at the last outer iteration.

1 // * * * * * * * * * Protected Member Functions * * * * * * * * //

2

3 void Foam:: pimpleControl ::read()

4 {

5 solutionControl ::read(false);

6

7 // Read solution controls

8 const dictionary& pimpleDict = dict();

9 nCorrPIMPLE_ = pimpleDict.lookupOrDefault <label >

10 (

11 "nOuterCorrectors",

12 1

13 );

14 nCorrPISO_ = pimpleDict.lookupOrDefault <label >("nCorrectors", 1);

15 turbOnFinalIterOnly_ =

16 pimpleDict.lookupOrDefault <Switch >

17 (

18 "turbOnFinalIterOnly",

19 true

20 );

21 }

Listing 11.5: The read function of the pimpleControl class

In addition, we see that the nOuterCorrectors are related to the PIMPLE and the nCorrectors

(inner loops) to the PISO algorithm.

The read() function will also call another read(argument) function out of the solutionControl

class. In this particular function, we initialize other essential control parameters for the algorithm

such as the nNonOrthogonalCorrectors, momentumPredictor, transonic, consistent keywords

as well as stuff for the residualControl (not shown in the code).

1 // * * * * * * * * * Protected Member Functions * * * * * * * * //

2

3 void Foam:: solutionControl ::read(const bool absTolOnly)

4 {

5 const dictionary& solutionDict = this ->dict();

6

7 // Read solution controls

8 nNonOrthCorr_ =

9 solutionDict.lookupOrDefault <label >
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10 (

11 "nNonOrthogonalCorrectors",

12 0

13 );

14 momentumPredictor_ =

15 solutionDict.lookupOrDefault("momentumPredictor", true);

16 transonic_ = solutionDict.lookupOrDefault("transonic", false);

17 consistent_ = solutionDict.lookupOrDefault("consistent", false);

18

19 // Read residual information

20 const dictionary residualDict

21 (

22 solutionDict.subOrEmptyDict("residualControl")

23 );

24

25 // Residual controls not shown

26 ...

Listing 11.6: The read function of the solutionControl class

To sum up. If we use the PIMPLE algorithm without any specific keyword, we will have the following

set-up:

• nOuterCorrectors (nCorrPimple) is set to 1 ,

• nCorrectors (nCorrPiso) is set to 1 ,

• nNonOrthogonalCorrectors (corrPiso) is set to 0 ,

• turbOnFinalIterOnly is set to false ,

• momentumPredictor is set to true ,

• transonic is set to false ,

• consistent is set to false ,

false means using SIMPLE; true means using SIMPLEC

• No residual control information is set .

For the further analyze, a simple non-steady test case is provided and the key-ideas of the

PIMPLE algorithm are demonstrated.
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11.4.1 The test case

To demonstrate the behavior of different settings within the fvSolution file, a simple 2D tran-

sient pipe flow will be considered; this is not the best case because the big advantage of the

PIMPLE method comes with complex geometries.

The pipe is contracted in the middle in order to accelerate the fluid and to create some vortex

after that; compare figure (11.1).

The kinematic viscosity ν is set to 1e−5 and the extrusion of the 2D mesh in z-direction is 0.01m.

The OpenFOAMr version that is used is 4.x and the case is available on www.holzmann-cfd.de/

pimpleCase/pimpleCase.tar.gz.

noSlip noSlip

outlet

noSlipnoSlip

inlet∆y = 0.1m

∆x = 0.45m

U = 0.2m
s

∆y = 0.05m

∆y = 0.025m

∆x = 0.05m ∆x = 0.2m

Figure 11.1: The 2D pipe flow domain for the analyze of the PIMPLE algorithm.

Another example and further explanations about the equations that are solved can be found in

Holzmann [2014] and an even more detailed introduction into the method and how the pressure-

momentum coupling is done in OpenFOAMr is given in Moukalled et al. [2015].

11.4.2 First considerations

In the following, we are using the above domain with the mentioned boundary conditions to

demonstrate the usage of the PIMPLE algorithm. First of all, we investigate into some basic

behavior of the problem.

By using the continuity equation, one can estimate the maximum time step for the simulation.

The area at the inlet is A = 0.1m · 0.01m = 0.001m2. Therefore, we get a volumetric flux

φ = UA = 0.2 m
s

0.001m2 = 0.0002 m3

s
. This flux has to cross the small section in the middle of

the domain and thus, the velocity has to increase, while the pressure will drop. The cross section

has an area of Across = 0.025m · 0.01m = 0.00025m2. Hence, the velocity in the cross section

became around Ucross = 0.8 m
s

. Based on the fact that the flow will be contracted in the cross

section, the velocity will further rise. So let us assume that we will get the maximum velocity of

1.2 m
s

somewhere in the mesh for the first guess. The resulting time step, with a cell distance of

www.holzmann-cfd.de/pimpleCase/pimpleCase.tar.gz
www.holzmann-cfd.de/pimpleCase/pimpleCase.tar.gz
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∆x = 0.002m, can then be evaluated with equation (11.3):

∆t =
1 · 0.002

1.2
s = 0.0016s .

The generated mesh is a pure hexaeder mesh and thus we do not need any orthogonal corrections.

First, we will use the pisoFoam solver and the evaluated time step as a reference for the

residuals and velocity contour plot. After that, we will use the pimpleFoam solver and apply

different keywords and settings.

To make the simple problem more complex, we use the Gauss linear discretization scheme,

that tends to produce non physical results, if the stability criterion is not strictly fulfilled.

11.4.3 Run the case with the PISO algorithm

The first step is to generate a reference case. This is done using the pisoFoam solver.

Due to the fact, that we solve the flow without a turbulence model, we will naturally get some

vortexes which result in high transient behavior. This will make the system more stiff and harder

to solve. Furthermore, we can expect, that the residual plots for the time steps look similar for

each case, based on the transient character. At last, based on the high transient behavior, we will

see some very interesting numerical phenomenon at the end of the discussion.

After the solver finishes, we get the simulation results shown in figure 11.2 and 11.3. Here,

we used a fixed time step (not adjustable). That means, based on the fact that the velocity will

change during the simulation, the Courant number will change too, cf. (11.3).

During the simulation a maximum Courant number of 1.4 and a maximum magnitude of the

velocity of around 1.3 m
s

are achieved. This is the first indication, that our time step approximation
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Figure 11.2: Residual plot for the pisoFoam solver; fixed ∆t = 0.0016s.



100 SIMPLE, PISO and PIMPLE algorithm

Figure 11.3: Velocity contours generated with pisoFoam and a fixed ∆t = 0.0016s.

works fine for this case. Although we reach higher Courant number than one, the simulation is

still stable. It should be clear that the time step approximation based on equation (11.3) can only

be used for very simple geometries; moreover it is common to adjust the time step based on the

Courant number than using a fixed ∆t.

Another thing that we can observe in front of the contraction area are velocity stripes. This

is based on the Gauss linear scheme and indicate that we are close to the instability limit and is

a common habit of that scheme.

11.4.4 PIMPLE working as PISO

Now we are using the same case without any changes and run the pimpleFoam solver on it. Based

on the fact that the PIMPLE entry within the fvSolution is empty, OpenFOAMr will use the

default values and hence, the pimpleFoam solver is run in PISOmode. Thus the execution is equal

to the pisoFoam solver. That can be proofed by checking the residuals and contour plots of this
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Figure 11.4: Residuals of the calculation with the PIMPLE algorithm that is working in PISO mode.
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Figure 11.5: Velocity contours of the PIMPLE algorithm that is working in PISO mode.

calculation and the last one. One can discover that both results are equal; the comparison is given

in figure 11.4 and 11.5.

11.4.5 PIMPLE working as PISO with large ∆t

Now we want to increase the time step to ∆t = 0.025s, to reach the end time of the simulation

much faster. This will increase the Courant number based on equation (11.3) and hence, the

simulation should crash. Finally, we observe what we expect and after a few time steps the solver

crashes with a Floating Point Exception (division by zero). The residual plot demonstrates, that

after the evaluation of the flow, critical velocities are reached and the algorithm will give an error;

cf. figure 11.6.

In figure 11.7 the qualitative result of the time step is given, when the instability is initiated.

On the right top and bottom we can see areas where the velocity is already larger than 60 m
s
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Figure 11.6: Residuals of the calculation with the PIMPLE algorithm that is working in PISO mode
using a large time step.
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Figure 11.7: Velocity contours of the PIMPLE algorithm that is working in PISO mode with a large
time step.

gray areas). Within the next two time steps, the instability moves further to the left side and

the velocities increases to values larger than 50.000 m
s

. Respectively the pressure will blow up too.

This happens until the accuracy and the delineation of the computer results into a zero value.

11.4.6 PIMPLE algorithm modified (add outer corrections)

Up to know, we run the PIMPLE algorithm in PISO mode. Now we will use the merged PISO-

SIMPLE method by manipulating the algorithm. We can do this by adding the following keywords

to the PIMPLE directory.

1 PIMPLE

2 {

3 // Outer Loops (Pressure -Momentum Correction )

4 nOuterCorrectors 5;

5 }

Listing 11.7: The control dictionary within the fvSolution file

The nOuterCorrectors will set the nCorrPIMPLE variable to five and hence, we make five outer

corrections (pressure-momentum correction loop). That include, re-building the velocity matrix

with the new flux field, correct the pressure with the new velocity matrix and correct the fluxes

based on the new pressure. Finally, we correct the velocities and go back to the re-guessing step

till we reached five times.

First of all, we would think that we will improve our calculation and make the algorithm more

robust and stable but in fact the solver crashes. This can be seen in the residual and contour plot.

In figure 11.9, the whole right part has already incredible large velocities which will move on to

the left, till, as before, the solver crashes. Furthermore, we see, that the crash happens already

earlier as before; compare residual plot 11.8. The reason for that is the usage of the outer corrector

loop. As we already said, the PIMPLE algorithm is a combination of PISO and SIMPLE. Moreover,

we know that the SIMPLE algorithm is not stable without relaxation. The outer corrector loops

can be considered as a SIMPLE loop and thus without under-relaxation, the procedure can be

unstable. Finally, it is not like the real SIMPLE algorithm because we have the limiting time step,

that stabilizes the whole solution procedure.
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Figure 11.8: Residuals of the calculation with the PIMPLE algorithm and nOuterCorrectors = 5.

Figure 11.9: Velocity contours of the PIMPLE algorithm with the usage of five nOuterCorrectors.

The difference with nOuterCorrectors

As we already discussed, the difference with the usage of the outer loop correction is, that we

recalculate the fluxes, pressure and momentum more often within one time step. All in all, we

do this five times here. Doing a more detailed analyze of the residuals, we get the plot shown in

figure 11.10.

As we can see, within one time step, we have five more iteration steps (SIMPLE). If we would

put a line through the highest peaks of each quantity, we would get figure 11.8.

The reason for the crash can be explained as follow: If we go on in time, the flow field will

further develop and within the small gap, we will get higher velocities. After some critical velocity

is reached, the solution will diverge. The fact that we are looping five times more over one time

step will speed up the divergence after it is initiated and hence, the solver fails faster than in the

case before.
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Figure 11.10: Residuals of the outer loop iterations.

11.4.7 PIMPLE algorithm further modified (add inner corrections)

Commonly it is helpful and suggested, that we recalculate the pressure with the new updated

fluxes but with the old matrix of the momentum (PISO corrections - pressure correction loop).

For that purpose we have to add a new keyword to the PIMPLE dictionary as shown in the code

snipped below.

1 PIMPLE

2 {

3 // Outer Loops (Pressure -Momentum Correction )

4 nOuterCorrectors 5;

5

6 // Inner Loops (Pressure Correction )

7 nCorrectors 2;

8 }

Listing 11.8: The control dictionary within the fvSolution file

As before, instead of getting a more stable algorithm, the solver already crashes in the second time

step. Therefore, we cannot analyze the general residual plot but we can evaluate the curvatures

of the outer and inner iterations.

Recall: For one time step, we calculate five outer loops and within one outer loop, we calculate

twice the pressure.

Figure 11.11 shows the inner and outer loops of the first two time steps. What we observe

is, that within the first time step, the solution tends to diverge already. This trend is continued

within the second time step till the solver crashes. The result of the first time step calculation

is given in figure 11.12. Increasing the outer loops would lead to an even faster abort. This

is because we can already observe, that within the first time step, the solution tends to diverge.

Using more outer iterations will help to establish the wrong solution and lead to a failure of the

algorithm already in the first time step.
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Figure 11.11: Residuals of the iterations of the inner and outer correction loops; nOuterCorrectors
= 5 and nCorrectors = 2.

Figure 11.12: Velocity contours; nOuterCorrectors = 5 and nCorrectors = 2.

Up to now, it seems that the PIMPLE algorithm only offers disadvantages. The reason for that

is based on the wrong usage of the method. The first step for the correct usage of the algorithm

is discussed in the next section.

11.4.8 PIMPLE algorithm with under-relaxation

To make the PIMPLE algorithm work fine, stable and more robust, we have to think about the

SIMPLE method (outer correction loop). As we already mentioned in section 11.1, the method is

not consistent and hence, we are forced to use the under-relaxation technique; note that under-

relaxation is not always necessary especially for Co < 1 and non-stiff problems. Therefore, it is

essential to tell OpenFOAMr the specific under-relaxation factors that should be used for the

fields and/or equations.

1 PIMPLE

2 {

3 // Outer Loops (Pressure -Momentum Correction )

4 nOuterCorrectors 100;
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5

6 // Inner Loops (Pressure Correction )

7 nCorrectors 2;

8 }

9 relaxationFactors

10 {

11 fields

12 {

13 p 0.4;

14 pFinal 0.4; // Last outer loop

15 }

16

17 equations

18 {

19 U 0.6;

20 UFinal 0.6; // Last outer loop

21 }

22 }

Listing 11.9: The relaxation dictionary within the fvSolution file

The relaxation information is put into another dictionary within the fvSolution file.

Note: The usage of the SIMPLEC algorithm can be activated by using the consistent keyword.

As we can see, we have two relaxation factors. One for all outer iterations except the last

one and one that is used just for the last one. There is a big discussion about the value of the

Final one. The question is, are we allowed to under-relax the final iteration like we did it for

the previous outer loops? Actually, if we under-relax the final outer loop we might loose some

information and we are not consistent. However, if we have a lot of outer iterations already done,

it should be fine to use a value smaller than one for the Final iteration. This will stabilize the

whole simulation because the relaxation factor of one in the last iteration can produce diverging

results in some cases. To understand the cut of the information more, the different relaxation

methods are discussed in more detail in section 12.

If we do not specify any relaxation factor, the default value of one is used for all outer iterations.

If we specify only the the relaxation factor for p and U without the Final one, the final relaxation

factors are set to one by default.

Starting the simulation with the above mentioned relaxation factors and the increase of the

outer correction loops (to see what happens), lead to the results shown in figure 11.13 and 11.14.

First of all, for each time step we are doing 100 outer corrections and within one outer loop

two inner corrections. That means, that we calculate for one time step, 100 momentum-pressure

and 200 pressure correction calculations. Checking the time depended residuals, we get similar

plots than using the PISO mode but now we have one essential difference. Within one time step

we have much more iterations to find the correct solution; cf. figure 11.15. And thats why we

are allowed to increase the time step without taking care that Co < 1. In the following case the

Courant number is larger than 20 and the simulation is still stable.

Comparing the contour plots of figure 11.3 and 11.14, we observe big differences. It seems that

the PIMPLE algorithm smooths the whole solution. The reasons for that could be related to the

too large time step that we were using within the PISO mode (Co ≈ 1.3), the fact, that the Final

under-relaxation factor was not set to one or that the time step within the PIMPLE mode was way

too large (Co ≈ 20) and hence, we over jump some important and essential transient information
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Figure 11.13: Residuals of the iterations of the inner and outer correction loops; nOuterCorrectors
= 100 and nCorrectors = 2.

Figure 11.14: Velocity contours; nOuterCorrectors = 100 and nCorrectors = 2.

which will influence the flow significantly. In our case, it is related to the last mentioned hypothesis.

Based on the large time step, we do not recognize the establishment of a back flow vortex.

Note: For high transient calculations, you should keep in mind, that it is important to keep the

time step in a range where all important phenomena that influence the flow field can be resolved.

The current investigated case can be changed in a way that the time step is adjusted by the

highest Courant number. By using Co = 4 and re-run the simulation without changing any other

setting, we get the result given in figure 11.16. The new result is very close to the PISO calculation

compared to the result observed with a fixed time step.
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Figure 11.15: Residuals of the iterations of the inner and outer correction loops; nOuterCorrectors
= 100 and nCorrectors = 2.

Figure 11.16: Velocity contours; nOuterCorrectors = 100 and nCorrectors = 2; additional
residual control added and Courant number controlled
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11.4.9 PIMPLE algorithm speed up

Instead of looping over the nOuterCorrectors till we reach the set value for each time step, it

would be much better to leave the loop after we a defined residual limit is fulfilled for each quantity.

For that purpose, we should also add the residual control sub dictionary to the PIMPLE dictionary.

Doing that, OpenFOAMr will run the outer corrector loop until the residual criterion for each

quantity is fulfilled. This will reduce the calculation time extremely and ensure good accuracy

within each time step.

The next listing shows the correct usage of the PIMPLE algorithm. Of course, you can also turn

on or off the different switches we already know. The added residual control will speed up the

whole PIMPLE procedure.

1 PIMPLE

2 {

3 // Outer Loops (Pressure -Momentum Correction )

4 nOuterCorrectors 100;

5

6 // Inner Loops (Pressure Correction )

7 nCorrectors 2;

8

9 residualControl

10 {

11 p

12 {

13 relTol 0;

14

15 // If this initial tolerance is reached , leave

16 tolerance 5e-5;

17 }

18

19 U

20 {

21 relTol 0;

22

23 // If this initial tolerance is reached , leave

24 tolerance 1e-4;

25 }

26 }

27 }

28

29 relaxationFactors

30 {

31 fields

32 {

33 p 0.4;

34 pFinal 0.4; // Last outer loop

35 }

36 equations

37 {

38 U 0.6;

39 UFinal 0.6; // Last outer loop

40 }

41 }

Listing 11.10: The residualControl dictionary within the fvSolution file
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We can now set-up 1000 outer correctors and the algorithm will automatically leave the loop,

after each residual criterion is fulfilled. The corresponding residual and contour plots are given

below.
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Figure 11.17: Residuals of the iterations of the inner and outer correction loops; nOuterCorrectors
= 100 and nCorrectors = 2; additional residual control added .

Figure 11.18: Velocity contours; nOuterCorrectors = 100 and nCorrectors = 2; additional
residual control added

The decrease of the calculation effort can also be seen in figure 11.19 because within the same

amount of outer loops, the solution is already further with respect to the simulation time than

in the case before – here we have eleven time steps whereas before we had only seven within the

same amount of outer loop iterations.
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Figure 11.19: Residuals of the iterations of the inner and outer correction loops; nOuterCorrectors
= 100 and nCorrectors = 2; additional residual control added.

11.4.10 PIMPLE conclusion

As we saw in the last sections, the PIMPLE algorithm can be used to enlarge the time step. It was

presented and discussed how the algorithm should be used and which advantages it offers.

For simple cases and flow pattern the PIMPLE method does not provide too much advantages.

For more complex geometries, skewed, non-orthogonal meshes that include different kinds of cells

and complex flow patterns or if we have to solve stiff systems, the PIMPLE algorithm will provide

much more advantages and can stabilize the simulation whereas the case would fail with PISO all

the time or at least require extreme small time steps.

In advance, the PIMPLE algorithm has to be applied correctly and the time step cannot be

chosen as large as we want. We should always know which time scale can be achieved or which

phenomena we are interested in. Different settings will lead to different solutions, if we do not

take care about the numerics.

In addition, keep in mind that OpenFOAMr is continuously updated. Therefore, the given

results might be different or not reproducible with other version.

11.5 PIMPLE algorithm flowchart

In the following flowchart, one can see how the PIMPLE algorithm is working within the OpenFOAMr

version 5.x. Once the idea of the algorithm is understood, the whole pressure-momentum coupling

solving procedure will be understood as well as the topics.

flowchart will be added in the next release.
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Chapter 12

The relaxation methods

Relaxation methods are used for steady-state simulations or if one uses a large time step and the

PIMPLE algorithm. The problem in such cases is that the solution might be not stable because

the quantities change to much. E.g. we do not take care about numerical limits like the Courant

number. To stabilize or even get a solution, we need to use relaxation methods. There are two

different ways to do that known as field relaxation and matrix relaxation.

12.1 Field relaxation

The field relaxation is simple to understand and limits the new values of the field as follows:

φn+1 = φn + α(φn+1,∗ − φn) . (12.1)

n denotes the value of the last iteration, n+1,∗ the actual calculated value, n+1 the new value and

α is the relaxation factor. The implementation is given in the GeometricField class. If we use

α = 1, the new value n+1 is identically to the one we calculated n+1,∗. On the other hand, if we

set the relaxation factor to zero, the new values will always be the old one. As we can see, the

relaxation is limiting the change of the value of the quantity we are interested.

Imagine a scenario where we calculate a quantity φ for each time step only once while using a

relaxation factor of α = 0.5. This would mean that we are not time consistent because we cut off

almost 50% of the information. If we would make two corrections within one time step, then we

would reach a better accuracy but still, we would cut off information. That is why OpenFOAMr

offers the usage of the Final flag in order to change the relaxation factor for the final outer corrector

within each time step. The field relaxation is mainly used for the pressure field.

12.2 Matrix relaxation

In the field of computational fluid dynamics we are solving matrix systems given as Ax = b. The

matrix A is in general a sparse matrix. That means that we have a lot of zero entries. Solving

this system in an iterative way requires linear solvers. The performance of the solver is based on

the diagonal dominance of the matrix A. Diagonal dominance means the following: If we would

go through the matrix, each row has to be at least diagonal equal and one of the rows has to be
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diagonal dominant. What does that mean?

• Diagonal equality is given if the diagonal element is equal to the sum of the magnitude of

the off-diagonals,

• Diagonal dominant is given if the diagonal element is larger than the sum of the magnitude

of the neighbor elements.

The main difference between matrix and field relaxation is based on the fact, that we do not cut

off too much information, if ever - it is based on the method how we relax.

Relaxing the matrix means to make it more diagonal dominant and therefore the linear solvers

are happier and will find the solution easier and faster. However, there are some things that we

have to keep in mind.

Relaxing the matrix means actually to divide all diagonal elements by the relaxation factor α.

Based on the fact that α is between 0 < α < 1, the diagonal elements increase its value. If we

would only change the values of the diagonal elements, the whole procedure is not consistent. To

be consistent, we have to add the changes to the source vector b in order to keep consistency. The

whole procedure makes a better matrix system for the linear solvers but on the other hand makes

it more explicit. The result is that we need more outer corrections to get all terms converged.

Important is the pre-requirement for the matrix relaxation which introduce inconsistency.

The implementation is given in the fvMatrix class.

Pre-requirement for matrix relaxation

The matrix relaxation requires the matrix to be at least diagonal equal in each row. Thats why we

have to manipulate the matrix before relaxing which introduces errors. To get an at least diagonal

equal matrix A, we first check each row of the matrix and examine if we have an diagonal equal or

dominant row. If the diagonal element is less than the sum of the magnitude of the off-diagonals,

we replace the diagonal value with the sum of the off-diagonals. Here, it can happen that we loose

information. However, the loose of information should me much less than for the field relaxation

because the matrix A should have only a few non-diagonal dominant entries if ever. But this is

case depended (see example below).

Special matrix treatment with α = 1

Using a relaxation factor of α = 1 is different to the field relaxation. While the field relaxation

would just do nothing, the matrix relaxation with might change the matrix; at least all rows that

are not diagonal equal or dominant are manipulated to become diagonal equal.

For example in cases where we have shock-waves, the cell in front of the shock-wave will have

a lower pressure value than the neighbor cell in which the shock-wave already exists. That will

lead to non-diagonal dominant or equal entry in the matrix. To make the linear solver happier,

we could make use of the matrix relaxation with the relaxation factor of α = 1. Thats why for

transonic cases the pressure equation is relaxed by α = 1; see rhoPimpleFoam cases with transonic

behavior.



Chapter 13

OpenFOAMr tutorials

For those who want to deal with OpenFOAMr and search for special tutorials, you can checkout

my website, www.Holzmann-cfd.de, that offers a lot of additional cases related to the following

topics:

• Meshing with snappyHexMesh,

• Solving and meshing (different scenarios),

• Using the dynamic mesh library,

• Setting up boundary conditions for AMI and ACMI,

• Generating own boundary conditions using the codedFixedValue,

• Coupling DAKOTAr with OpenFOAMr,

• Coupling OpenFOAMr with Blenderr.

Furthermore, you can find different libraries and publications an my website.

For OpenFOAMr beginners

If you are not familiar with OpenFOAMr I recommend you to check out the following website,

wiki.openfoam.com. Here you find a new wiki that offers a lot of information; you can thank

Jószef Nagy for the good work and all contributers mentioned on the site. In addition you will

find some three weeks series in which you will learn a lot of stuff. Furthermore, the User-Guide of

OpenFOAMr should be read.
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Chapter 14

Appendix

14.1 The Incompressible Reynolds-Stress-Equation

The derivation of the Reynolds-Stress tensor is structured as follows:

• The derivation of the time derivative is shown completely for all terms ,

• The derivation of the convective derivative is shown completely for term a) ,

• The derivation of the shear-rate derivative is shown completely for term a) ,

• The derivation of the pressure term is shown completely for all terms .

The derivation is given in all details to demonstrate how we get to the equation. Furthermore, we

will be able to understand the terms and the reason why we have to add terms in order to apply

the product rule.

Recall: In section 9.8 we introduced the way how we will use the momentum equation in

order to build the Reynolds-Stress equation. Therefore, we multiplied the momentum equation

with respect to the different fluctuations and set the sum of all terms to zero. Here, we introduced

the Navier-Stokes operator N . Finally, we build the equation that has to be evaluated which is

given for completeness again:

u′xN (ūx + u′x) + u′yN (ūz + u′z)︸ ︷︷ ︸
a)

+u′xN (ūy + u′y) + u′yN (ūx + u′x)︸ ︷︷ ︸
b)

+u′xN (ūz + u′z) + u′yN (ūy + u′y)︸ ︷︷ ︸
c)

+u′yN (ūx + u′x) + u′zN (ūz + u′z)︸ ︷︷ ︸
d)

+u′yN (ūy + u′y) + u′zN (ūx + u′x)︸ ︷︷ ︸
e)

+u′yN (ūz + u′z) + u′zN (ūy + u′y)︸ ︷︷ ︸
f)

+u′zN (ūx + u′x) + u′xN (ūz + u′z)︸ ︷︷ ︸
g)

+u′zN (ūy + u′y) + u′xN (ūx + u′x)︸ ︷︷ ︸
h)

+u′zN (ūz + u′z) + u′xN (ūy + u′y)︸ ︷︷ ︸
i)

= 0 .

Furthermore, we introduced the rules and tricks we are using during the derivation procedure:
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• Reynolds time-averaged terms that are linear in the fluctuation are zero ,

• The derivative
∂u′i
∂xi

= 0 ,

• Product rule (1.2) ,

• Adding and subtracting terms to be able to use the product rule; g(x) = g(x)+f(x)−f(x) .

With that information, we will now demonstrate the derivation of the Reynolds-Stress equation

in the order given above.

The Time Derivative

a)

u′xρ
∂(ūx + u′x)

∂t
+ u′yρ

∂(ūz + u′z)

∂t

=
�
�
��

u′xρ
∂ūx

∂t
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∂u′x
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+
�
�

��
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∂ūz

∂t
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∂t
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∂t

. (14.1)

b)
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∂(ūy + u′y)

∂t
+ u′yρ
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��

u′xρ
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d)
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f)
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∂ūz

∂t
+ u′yρ

∂u′z
∂t

+
�
�
��

u′zρ
∂ūy
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g)
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∂(ūx + u′x)

∂t
+ u′xρ
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Sorting the terms,
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and using the product rule, we end up with:
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The above expression can be written in one single term by using the Einsteins summation con-

vention:

ρ
∂u′ju

′
i

∂t
=
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i

∂t
. (14.10)
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The Convective Term

First we will focus on the convective term of part a)
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(ūz + u′z) + ρ (ūz + u′z)
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= (u′xρūx + u′xρu
′
x)

∂

∂x
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(ūz + u′z)

+
(
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′
x

∂

∂x
ūx + u′xρu

′
x

∂

∂x
u′x +

�
����

u′xρūy
∂

∂y
ūx + u′xρūy

∂

∂y
u′x

+ u′xρu
′
y

∂

∂y
ūx + u′xρu

′
y

∂

∂y
u′x +

�
����

u′xρūz
∂

∂z
ūx + u′xρūz

∂

∂z
u′x + u′xρu

′
z

∂

∂z
ūx + u′xρu

′
z

∂

∂z
u′x

+
�
����

u′yρūx
∂

∂x
ūz + u′yρūx

∂

∂x
u′z + u′yρu

′
x

∂

∂x
ūz + u′yρu

′
x

∂

∂x
u′z +

�
����

u′yρūy
∂

∂y
ūz + u′yρūy

∂

∂y
u′z

+ u′yρu
′
y

∂

∂y
ūz + u′yρu

′
y

∂

∂y
u′z +

�
����

u′yρūz
∂

∂z
ūz + u′yρūz

∂

∂z
u′z + u′yρu

′
z

∂

∂z
ūz + u′yρu

′
z

∂

∂z
u′z

= u′xρūx
∂

∂x
u′x︸ ︷︷ ︸

1

+u′xρu
′
x

∂

∂x
ūx︸ ︷︷ ︸

2

+u′xρu
′
x

∂

∂x
u′x︸ ︷︷ ︸

3

+u′xρūy
∂

∂y
u′x︸ ︷︷ ︸

4

+u′xρu
′
y

∂

∂y
ūx︸ ︷︷ ︸

5

+u′xρu
′
y

∂

∂y
u′x︸ ︷︷ ︸

6

+ u′xρūz
∂

∂z
u′x︸ ︷︷ ︸

7

+u′xρu
′
z

∂

∂z
ūx︸ ︷︷ ︸

8

+u′xρu
′
z

∂

∂z
u′x︸ ︷︷ ︸

9

+u′yρūx
∂

∂x
u′z︸ ︷︷ ︸

10

+u′yρu
′
x

∂

∂x
ūz︸ ︷︷ ︸

11

+u′yρu
′
x

∂

∂x
u′z︸ ︷︷ ︸

12

+ u′yρūy
∂

∂y
u′z︸ ︷︷ ︸

13

+u′yρu
′
y

∂

∂y
ūz︸ ︷︷ ︸

14

+u′yρu
′
y

∂

∂y
u′z︸ ︷︷ ︸

15

+u′yρūz
∂

∂z
u′z︸ ︷︷ ︸

16

+u′yρu
′
z

∂

∂z
ūz︸ ︷︷ ︸

17

+u′yρu
′
z

∂

∂z
u′z︸ ︷︷ ︸

18

. (14.11)

The same procedure can be done with the terms marked as b) to i). Hence, we will end up always

with the last line of equation (14.11) result with respect to the used quantities. Thus, we end up

with:
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b)

u′xρūx
∂

∂x
u′y︸ ︷︷ ︸

19

+u′xρu′x
∂

∂x
ūy︸ ︷︷ ︸

20

+u′xρu′x
∂

∂x
u′y︸ ︷︷ ︸

21

+u′xρūy
∂

∂y
u′y︸ ︷︷ ︸

22

+u′xρu′y
∂

∂y
ūy︸ ︷︷ ︸

23

+u′xρu′y
∂

∂y
u′y︸ ︷︷ ︸

24

+ u′xρūz
∂

∂z
u′y︸ ︷︷ ︸

25

+u′xρu′z
∂

∂z
ūy︸ ︷︷ ︸

26

+u′xρu′z
∂

∂z
u′y︸ ︷︷ ︸

27

+u′yρūx
∂

∂x
u′x︸ ︷︷ ︸

28

+u′yρu′x
∂

∂x
ūx︸ ︷︷ ︸

29

+u′yρu′x
∂

∂x
u′x︸ ︷︷ ︸

30

+ u′yρūy
∂

∂y
u′x︸ ︷︷ ︸

31

+u′yρu′y
∂

∂y
ūx︸ ︷︷ ︸

32

+u′yρu′y
∂

∂y
u′x︸ ︷︷ ︸

33

+u′yρūz
∂

∂z
u′x︸ ︷︷ ︸

34

+u′yρu′z
∂

∂z
ūx︸ ︷︷ ︸

35

+u′yρu′z
∂

∂z
u′x︸ ︷︷ ︸

36

,

c)

u′xρūx
∂

∂x
u′z︸ ︷︷ ︸

37

+u′xρu′x
∂

∂x
ūz︸ ︷︷ ︸

38

+u′xρu′x
∂

∂x
u′z︸ ︷︷ ︸

39

+u′xρūy
∂

∂y
u′z︸ ︷︷ ︸

40

+u′xρu′y
∂

∂y
ūz︸ ︷︷ ︸

41

+u′xρu′y
∂

∂y
u′z︸ ︷︷ ︸

42

+ u′xρūz
∂

∂z
u′z︸ ︷︷ ︸

43

+u′xρu′z
∂

∂z
ūz︸ ︷︷ ︸

44

+u′xρu′z
∂

∂z
u′z︸ ︷︷ ︸

45

+u′yρūx
∂

∂x
u′y︸ ︷︷ ︸

46

+u′yρu′x
∂

∂x
ūy︸ ︷︷ ︸

47

+u′yρu′x
∂

∂x
u′y︸ ︷︷ ︸

48

+ u′yρūy
∂

∂y
u′y︸ ︷︷ ︸

49

+u′yρu′y
∂

∂y
ūy︸ ︷︷ ︸

50

+u′yρu′y
∂

∂y
u′y︸ ︷︷ ︸

51

+u′yρūz
∂

∂z
u′y︸ ︷︷ ︸

52

+u′yρu′z
∂

∂z
ūy︸ ︷︷ ︸

53

+u′yρu′z
∂

∂z
u′y︸ ︷︷ ︸

54

,

d)

= u′yρūx
∂

∂x
u′x︸ ︷︷ ︸

55

+u′yρu′x
∂

∂x
ūx︸ ︷︷ ︸

56

+u′yρu′x
∂

∂x
u′x︸ ︷︷ ︸

57

+u′yρūy
∂

∂y
u′x︸ ︷︷ ︸

58

+u′yρu′y
∂

∂y
ūx︸ ︷︷ ︸

59

+u′yρu′y
∂

∂y
u′x︸ ︷︷ ︸

60

+ u′yρūz
∂

∂z
u′x︸ ︷︷ ︸

61

+u′yρu′z
∂

∂z
ūx︸ ︷︷ ︸

62

+u′yρu′z
∂

∂z
u′x︸ ︷︷ ︸

63

+u′zρūx
∂

∂x
u′z︸ ︷︷ ︸

64

+u′zρu′x
∂

∂x
ūz︸ ︷︷ ︸

65

+u′zρu′x
∂

∂x
u′z︸ ︷︷ ︸

66

+ u′zρūy
∂

∂y
u′z︸ ︷︷ ︸

67

+u′zρu′y
∂

∂y
ūz︸ ︷︷ ︸

68

+u′zρu′y
∂

∂y
u′z︸ ︷︷ ︸

69

+u′zρūz
∂

∂z
u′z︸ ︷︷ ︸

70

+u′zρu′z
∂

∂z
ūz︸ ︷︷ ︸

71

+u′zρu′z
∂

∂z
u′z︸ ︷︷ ︸

72

,

e)

u′yρūx
∂

∂x
u′y︸ ︷︷ ︸

73

+u′yρu′x
∂

∂x
ūy︸ ︷︷ ︸

74

+u′yρu′x
∂

∂x
u′y︸ ︷︷ ︸

75

+u′yρūy
∂

∂y
u′y︸ ︷︷ ︸

76

+u′yρu′y
∂

∂y
ūy︸ ︷︷ ︸

77

+u′yρu′y
∂

∂y
u′y︸ ︷︷ ︸

78

+ u′yρūz
∂

∂z
u′y︸ ︷︷ ︸

79

+u′yρu′z
∂

∂z
ūy︸ ︷︷ ︸

80

+u′yρu′z
∂

∂z
u′y︸ ︷︷ ︸

81

+u′zρūx
∂

∂x
u′x︸ ︷︷ ︸

82

+u′zρu′x
∂

∂x
ūx︸ ︷︷ ︸

83

+u′zρu′x
∂

∂x
u′x︸ ︷︷ ︸

84

+ u′zρūy
∂

∂y
u′x︸ ︷︷ ︸

85

+u′zρu′y
∂

∂y
ūx︸ ︷︷ ︸

86

+u′zρu′y
∂

∂y
u′x︸ ︷︷ ︸

87

+u′zρūz
∂

∂z
u′x︸ ︷︷ ︸

88

+u′zρu′z
∂

∂z
ūx︸ ︷︷ ︸

89

+u′zρu′z
∂

∂z
u′x︸ ︷︷ ︸

90

,
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f)

u′yρūx
∂

∂x
u′z︸ ︷︷ ︸

91

+u′yρu′x
∂

∂x
ūz︸ ︷︷ ︸

92

+u′yρu′x
∂

∂x
u′z︸ ︷︷ ︸

93

+u′yρūy
∂

∂y
u′z︸ ︷︷ ︸

94

+u′yρu′y
∂

∂y
ūz︸ ︷︷ ︸

95

+u′yρu′y
∂

∂y
u′z︸ ︷︷ ︸

96

+ u′yρūz
∂

∂z
u′z︸ ︷︷ ︸

97

+u′yρu′z
∂

∂z
ūz︸ ︷︷ ︸

98

+u′yρu′z
∂

∂z
u′z︸ ︷︷ ︸

99

+u′zρūx
∂

∂x
u′y︸ ︷︷ ︸

100

+u′zρu′x
∂

∂x
ūy︸ ︷︷ ︸

101

+u′zρu′x
∂

∂x
u′y︸ ︷︷ ︸

102

+ u′zρūy
∂

∂y
u′y︸ ︷︷ ︸

103

+u′zρu′y
∂

∂y
ūy︸ ︷︷ ︸

104

+u′zρu′y
∂

∂y
u′y︸ ︷︷ ︸

105

+u′zρūz
∂

∂z
u′y︸ ︷︷ ︸

106

+u′zρu′z
∂

∂z
ūy︸ ︷︷ ︸

107

+u′zρu′z
∂

∂z
u′y︸ ︷︷ ︸

108

,

g)

= u′zρūx
∂

∂x
u′x︸ ︷︷ ︸

109

+u′zρu′x
∂

∂x
ūx︸ ︷︷ ︸

110

+u′zρu′x
∂

∂x
u′x︸ ︷︷ ︸

111

+u′zρūy
∂

∂y
u′x︸ ︷︷ ︸

112

+u′zρu′y
∂

∂y
ūx︸ ︷︷ ︸

113

+u′zρu′y
∂

∂y
u′x︸ ︷︷ ︸

114

+ u′zρūz
∂

∂z
u′x︸ ︷︷ ︸

115

+u′zρu′z
∂

∂z
ūx︸ ︷︷ ︸

116

+u′zρu′z
∂

∂z
u′x︸ ︷︷ ︸

117

+u′xρūx
∂

∂x
u′z︸ ︷︷ ︸

118

+u′xρu′x
∂

∂x
ūz︸ ︷︷ ︸

119

+u′xρu′x
∂

∂x
u′z︸ ︷︷ ︸

120

+ u′xρūy
∂

∂y
u′z︸ ︷︷ ︸

121

+u′xρu′y
∂

∂y
ūz︸ ︷︷ ︸

122

+u′xρu′y
∂

∂y
u′z︸ ︷︷ ︸

123

+u′xρūz
∂

∂z
u′z︸ ︷︷ ︸

124

+u′xρu′z
∂

∂z
ūz︸ ︷︷ ︸

125

+u′xρu′z
∂

∂z
u′z︸ ︷︷ ︸

126

,

h)

u′zρūx
∂

∂x
u′y︸ ︷︷ ︸

127

+u′zρu′x
∂

∂x
ūy︸ ︷︷ ︸

128

+u′zρu′x
∂

∂x
u′y︸ ︷︷ ︸

129

+u′zρūy
∂

∂y
u′y︸ ︷︷ ︸

130

+u′zρu′y
∂

∂y
ūy︸ ︷︷ ︸

131

+u′zρu′y
∂

∂y
u′y︸ ︷︷ ︸

132

+ u′zρūz
∂

∂z
u′y︸ ︷︷ ︸

133

+u′zρu′z
∂

∂z
ūy︸ ︷︷ ︸

134

+u′zρu′z
∂

∂z
u′y︸ ︷︷ ︸

135

+u′xρūx
∂

∂x
u′x︸ ︷︷ ︸

136

+u′xρu′x
∂

∂x
ūx︸ ︷︷ ︸

137

+u′xρu′x
∂

∂x
u′x︸ ︷︷ ︸

138

+ u′xρūy
∂

∂y
u′x︸ ︷︷ ︸

139

+u′xρu′y
∂

∂y
ūx︸ ︷︷ ︸

140

+u′xρu′y
∂

∂y
u′x︸ ︷︷ ︸

141

+u′xρūz
∂

∂z
u′x︸ ︷︷ ︸

142

+u′xρu′z
∂

∂z
ūx︸ ︷︷ ︸

143

+u′xρu′z
∂

∂z
u′x︸ ︷︷ ︸

144

,

i)

u′zρūx
∂

∂x
u′z︸ ︷︷ ︸

145

+u′zρu′x
∂

∂x
ūz︸ ︷︷ ︸

146

+u′zρu′x
∂

∂x
u′z︸ ︷︷ ︸

147

+u′zρūy
∂

∂y
u′z︸ ︷︷ ︸

148

+u′zρu′y
∂

∂y
ūz︸ ︷︷ ︸

149

+u′zρu′y
∂

∂y
u′z︸ ︷︷ ︸

150

+ u′zρūz
∂

∂z
u′z︸ ︷︷ ︸

151

+u′zρu′z
∂

∂z
ūz︸ ︷︷ ︸

152

+u′zρu′z
∂

∂z
u′z︸ ︷︷ ︸

153

+u′xρūx
∂

∂x
u′y︸ ︷︷ ︸

154

+u′xρu′x
∂

∂x
ūy︸ ︷︷ ︸

155

+u′xρu′x
∂

∂x
u′y︸ ︷︷ ︸

156

+ u′xρūy
∂

∂y
u′y︸ ︷︷ ︸

157

+u′xρu′y
∂

∂y
ūy︸ ︷︷ ︸

158

+u′xρu′y
∂

∂y
u′y︸ ︷︷ ︸

159

+u′xρūz
∂

∂z
u′y︸ ︷︷ ︸

160

+u′xρu′z
∂

∂z
ūy︸ ︷︷ ︸

161

+u′xρu′z
∂

∂z
u′y︸ ︷︷ ︸

162

.

Analyzing the sum of terms, we figure out that there are different kind of terms:
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• Terms that only include the fluctuation quantities ,

• Terms that include the mean quantity inside the derivation ,

• Terms that include the mean quantity outside the derivation .

Lets consider the terms that contains the fluctuation quantities for now:

u′xρu′x
∂

∂x
u′x︸ ︷︷ ︸

3

+u′xρu′y
∂

∂y
u′x︸ ︷︷ ︸

6

+u′xρu′z
∂

∂z
u′x︸ ︷︷ ︸

9

+u′yρu′x
∂

∂x
u′z︸ ︷︷ ︸

12

+u′yρu′y
∂

∂y
u′z︸ ︷︷ ︸

15

+u′yρu′z
∂

∂z
u′z︸ ︷︷ ︸

18

+ u′xρu′x
∂

∂x
u′y︸ ︷︷ ︸

21

+u′xρu′y
∂

∂y
u′y︸ ︷︷ ︸

24

+u′xρu′z
∂

∂z
u′y︸ ︷︷ ︸

27

+u′yρu′x
∂

∂x
u′x︸ ︷︷ ︸

30

+u′yρu′y
∂

∂y
u′x︸ ︷︷ ︸

33

+u′yρu′z
∂

∂z
u′x︸ ︷︷ ︸

36

+ u′xρu′x
∂

∂x
u′z︸ ︷︷ ︸

39

+u′xρu′y
∂

∂y
u′z︸ ︷︷ ︸

42

+u′xρu′z
∂

∂z
u′z︸ ︷︷ ︸

45

+u′yρu′x
∂

∂x
u′y︸ ︷︷ ︸

48

+u′yρu′y
∂

∂y
u′y︸ ︷︷ ︸

51

+u′yρu′z
∂

∂z
u′y︸ ︷︷ ︸

54

+ u′yρu′x
∂

∂x
u′x︸ ︷︷ ︸

57

+u′yρu′y
∂

∂y
u′x︸ ︷︷ ︸

60

+u′yρu′z
∂

∂z
u′x︸ ︷︷ ︸

63

+u′zρu′x
∂

∂x
u′z︸ ︷︷ ︸

66

+u′zρu′y
∂

∂y
u′z︸ ︷︷ ︸

69

+u′zρu′z
∂

∂z
u′z︸ ︷︷ ︸

72

+ u′yρu′x
∂

∂x
u′y︸ ︷︷ ︸

75

+u′yρu′y
∂

∂y
u′y︸ ︷︷ ︸

78

+u′yρu′z
∂

∂z
u′y︸ ︷︷ ︸

81

+u′zρu′x
∂

∂x
u′x︸ ︷︷ ︸

84

+u′zρu′y
∂

∂y
u′x︸ ︷︷ ︸

87

+u′zρu′z
∂

∂z
u′x︸ ︷︷ ︸

90

+ u′yρu′x
∂

∂x
u′z︸ ︷︷ ︸

93

+u′yρu′y
∂

∂y
u′z︸ ︷︷ ︸

96

+u′yρu′z
∂

∂z
u′z︸ ︷︷ ︸

99

+u′zρu′x
∂

∂x
u′y︸ ︷︷ ︸

102

+u′zρu′y
∂

∂y
u′y︸ ︷︷ ︸

105

+u′zρu′z
∂

∂z
u′y︸ ︷︷ ︸

108

+ u′zρu′x
∂

∂x
u′x︸ ︷︷ ︸

111

+u′zρu′y
∂

∂y
u′x︸ ︷︷ ︸

114

+u′zρu′z
∂

∂z
u′x︸ ︷︷ ︸

117

+u′xρu′x
∂

∂x
u′z︸ ︷︷ ︸

120

+u′xρu′y
∂

∂y
u′z︸ ︷︷ ︸

123

+u′xρu′z
∂

∂z
u′z︸ ︷︷ ︸

126

+ u′zρu′x
∂

∂x
u′y︸ ︷︷ ︸

129

+u′zρu′y
∂

∂y
u′y︸ ︷︷ ︸

132

+u′zρu′z
∂

∂z
u′y︸ ︷︷ ︸

135

+u′xρu′x
∂

∂x
u′x︸ ︷︷ ︸

138

+u′xρu′y
∂

∂y
u′x︸ ︷︷ ︸

141

+u′xρu′z
∂

∂z
u′x︸ ︷︷ ︸

144

+ u′zρu′x
∂

∂x
u′z︸ ︷︷ ︸

147

+u′zρu′y
∂

∂y
u′z︸ ︷︷ ︸

150

+u′zρu′z
∂

∂z
u′z︸ ︷︷ ︸

153

+u′xρu′x
∂

∂x
u′y︸ ︷︷ ︸

156

+u′xρu′y
∂

∂y
u′y︸ ︷︷ ︸

159

+u′xρu′z
∂

∂z
u′y︸ ︷︷ ︸

162

.

We get 54 terms that can be combined using the product rule. One example would be:

ρ
∂

∂x
u′yu′zu′x = ρu′zu′x

∂

∂x
u′y + ρu′yu′x

∂

∂x
u′z + ρu′yu′z

∂

∂x
u′x . (14.12)

In other words, three terms can be combined to one term. Applying the product rule to the terms,

we will realize that not all terms can be combined. Therefore we have to add 27 terms of the

following kind:

ρu′iu
′
j
�
�
�∂

∂xk
u′k = 0 . (14.13)
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After adding these terms we end up with 81 terms that can be reduced to 27. Finally we get:

ρ
∂

∂x
u′xu′xu′x + ρ

∂

∂y
u′xu′xu′y + ρ

∂

∂z
u′xu′xu′z + ρ

∂

∂x
u′xu′yu′x + ρ

∂

∂y
u′xu′yu′y + ρ

∂

∂z
u′xu′yu′z

+ ρ
∂

∂x
u′xu′zu′x + ρ

∂

∂y
u′xu′zu′y + ρ

∂

∂z
u′xu′zu′z + ρ

∂

∂x
u′yu′xu′x + ρ

∂

∂y
u′yu′xu′y + ρ

∂

∂z
u′yu′xu′z

+ ρ
∂

∂x
u′yu′yu′x + ρ

∂

∂y
u′yu′yu′y + ρ

∂

∂z
u′yu′yu′z + ρ

∂

∂x
u′yu′zu′x + ρ

∂

∂y
u′yu′zu′y + ρ

∂

∂z
u′yu′zu′z

+ ρ
∂

∂x
u′zu′xu′x + ρ

∂

∂y
u′zu′xu′y + ρ

∂

∂z
u′zu′xu′z + ρ

∂

∂x
u′zu′yu′x + ρ

∂

∂y
u′zu′yu′y + ρ

∂

∂z
u′zu′yu′z

+ ρ
∂

∂x
u′zu′zu′x + ρ

∂

∂y
u′zu′zu′y + ρ

∂

∂z
u′zu′zu′z .

Now it is obvious that we can rewrite this equation using the Einsteins summation convention. In
addition, we will put the density inside the derivative due to the fact that it is constant. After
applying the Reynolds time-averaging, we end up with the convective term as:

ρ
∂

∂xk
u′iu
′
ju
′
k =

∂

∂xk
ρu′iu

′
ju
′
k . (14.14)
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Now, we will consider all terms that contain the mean quantity inside the derivative:

u′xρu′x
∂

∂x
ūx︸ ︷︷ ︸

2

+u′xρu′y
∂

∂y
ūx︸ ︷︷ ︸

5

+u′xρu′z
∂

∂z
ūx︸ ︷︷ ︸

8

+u′yρu′x
∂

∂x
ūz︸ ︷︷ ︸

11

+u′yρu′y
∂

∂y
ūz︸ ︷︷ ︸

14

+u′yρu′z
∂

∂z
ūz︸ ︷︷ ︸

17

+ u′xρu′x
∂

∂x
ūy︸ ︷︷ ︸

20

+u′xρu′y
∂

∂y
ūy︸ ︷︷ ︸

23

+u′xρu′z
∂

∂z
ūy︸ ︷︷ ︸

26

+u′yρu′x
∂

∂x
ūx︸ ︷︷ ︸

29

+u′yρu′y
∂

∂y
ūx︸ ︷︷ ︸

32

+u′yρu′z
∂

∂z
ūx︸ ︷︷ ︸

35

+ u′xρu′x
∂

∂x
ūz︸ ︷︷ ︸

38

+u′xρu′y
∂

∂y
ūz︸ ︷︷ ︸

41

+u′xρu′z
∂

∂z
ūz︸ ︷︷ ︸

44

+u′yρu′x
∂

∂x
ūy︸ ︷︷ ︸

47

+u′yρu′y
∂

∂y
ūy︸ ︷︷ ︸

50

+u′yρu′z
∂

∂z
ūy︸ ︷︷ ︸

53

+ u′yρu′x
∂

∂x
ūx︸ ︷︷ ︸

56

+u′yρu′y
∂

∂y
ūx︸ ︷︷ ︸

59

+u′yρu′z
∂

∂z
ūx︸ ︷︷ ︸

62

+u′zρu′x
∂

∂x
ūz︸ ︷︷ ︸

65

+u′zρu′y
∂

∂y
ūz︸ ︷︷ ︸

68

+u′zρu′z
∂

∂z
ūz︸ ︷︷ ︸

71

+ u′yρu′x
∂

∂x
ūy︸ ︷︷ ︸

74

+u′yρu′y
∂

∂y
ūy︸ ︷︷ ︸

77

+u′yρu′z
∂

∂z
ūy︸ ︷︷ ︸

80

+u′zρu′x
∂

∂x
ūx︸ ︷︷ ︸

83

+u′zρu′y
∂

∂y
ūx︸ ︷︷ ︸

86

+u′zρu′z
∂

∂z
ūx︸ ︷︷ ︸

89

+ u′yρu′x
∂

∂x
ūz︸ ︷︷ ︸

92

+u′yρu′y
∂

∂y
ūz︸ ︷︷ ︸

95

+u′yρu′z
∂

∂z
ūz︸ ︷︷ ︸

98

+u′zρu′x
∂

∂x
ūy︸ ︷︷ ︸

101

+u′zρu′y
∂

∂y
ūy︸ ︷︷ ︸

104

+u′zρu′z
∂

∂z
ūy︸ ︷︷ ︸

107

+ u′zρu′x
∂

∂x
ūx︸ ︷︷ ︸

110

+u′zρu′y
∂

∂y
ūx︸ ︷︷ ︸

113

+u′zρu′z
∂

∂z
ūx︸ ︷︷ ︸

116

+u′xρu′x
∂

∂x
ūz︸ ︷︷ ︸

119

+u′xρu′y
∂

∂y
ūz︸ ︷︷ ︸

122

+u′xρu′z
∂

∂z
ūz︸ ︷︷ ︸

125

+ u′zρu′x
∂

∂x
ūy︸ ︷︷ ︸

128

+u′zρu′y
∂

∂y
ūy︸ ︷︷ ︸

131

+u′zρu′z
∂

∂z
ūy︸ ︷︷ ︸

134

+u′xρu′x
∂

∂x
ūx︸ ︷︷ ︸

137

+u′xρu′y
∂

∂y
ūx︸ ︷︷ ︸

140

+u′xρu′z
∂

∂z
ūx︸ ︷︷ ︸

143

+ u′zρu′x
∂

∂x
ūz︸ ︷︷ ︸

146

+u′zρu′y
∂

∂y
ūz︸ ︷︷ ︸

149

+u′zρu′z
∂

∂z
ūz︸ ︷︷ ︸

152

+u′xρu′x
∂

∂x
ūy︸ ︷︷ ︸

155

+u′xρu′y
∂

∂y
ūy︸ ︷︷ ︸

158

+u′xρu′z
∂

∂z
ūy︸ ︷︷ ︸

161

.

Again, we end up with 54 terms. This terms can be sorted and rearranged into twice 27 terms.

Doing so, we will see that we can simplify the first 27 terms using the Einsteins summation

convention to:

ρu′iu
′
k

∂

∂xk
ūj = ρu′iu

′
k

∂

∂xk
ūj . (14.15)

and the second 27 terms could be written as:

ρu′ju
′
k

∂

∂xk
ūi = ρu′ju

′
k

∂

∂xk
ūi . (14.16)

Note: If you want to check if everything is fine with the above equation, just build the sum of

the two last equations and you will see that you get the 52 terms.

Finally we have to consider all terms that contain the mean of the quantities outside of the
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derivative:

u′xρūx
∂

∂x
u′x︸ ︷︷ ︸

1

+u′xρūy
∂

∂y
u′x︸ ︷︷ ︸

4

+u′xρūz
∂

∂z
u′x︸ ︷︷ ︸

7

+u′yρūx
∂

∂x
u′z︸ ︷︷ ︸

10

+u′yρūy
∂

∂y
u′z︸ ︷︷ ︸

13

+u′yρūz
∂

∂z
u′z︸ ︷︷ ︸

16

+ u′xρūx
∂

∂x
u′y︸ ︷︷ ︸

19

+u′xρūy
∂

∂y
u′y︸ ︷︷ ︸

22

+u′xρūz
∂

∂z
u′y︸ ︷︷ ︸

25

+u′yρūx
∂

∂x
u′x︸ ︷︷ ︸

28

+u′yρūy
∂

∂y
u′x︸ ︷︷ ︸

31

+u′yρūz
∂

∂z
u′x︸ ︷︷ ︸

34

+ u′xρūx
∂

∂x
u′z︸ ︷︷ ︸

37

+u′xρūy
∂

∂y
u′z︸ ︷︷ ︸

40

+u′xρūz
∂

∂z
u′z︸ ︷︷ ︸

43

+u′yρūx
∂

∂x
u′y︸ ︷︷ ︸

46

+u′yρūy
∂

∂y
u′y︸ ︷︷ ︸

49

+u′yρūz
∂

∂z
u′y︸ ︷︷ ︸

52

+ u′yρūx
∂

∂x
u′x︸ ︷︷ ︸

55

+u′yρūy
∂

∂y
u′x︸ ︷︷ ︸

58

+u′yρūz
∂

∂z
u′x︸ ︷︷ ︸

61

+u′zρūx
∂

∂x
u′z︸ ︷︷ ︸

64

+u′zρūy
∂

∂y
u′z︸ ︷︷ ︸

67

+u′zρūz
∂

∂z
u′z︸ ︷︷ ︸

70

+ u′yρūx
∂

∂x
u′y︸ ︷︷ ︸

73

+u′yρūy
∂

∂y
u′y︸ ︷︷ ︸

76

+u′yρūz
∂

∂z
u′y︸ ︷︷ ︸

79

+u′zρūx
∂

∂x
u′x︸ ︷︷ ︸

82

+u′zρūy
∂

∂y
u′x︸ ︷︷ ︸

85

+u′zρūz
∂

∂z
u′x︸ ︷︷ ︸

88

+ u′yρūx
∂

∂x
u′z︸ ︷︷ ︸

91

+u′yρūy
∂

∂y
u′z︸ ︷︷ ︸

94

+u′yρūz
∂

∂z
u′z︸ ︷︷ ︸

97

+u′zρūx
∂

∂x
u′y︸ ︷︷ ︸

100

+u′zρūy
∂

∂y
u′y︸ ︷︷ ︸

103

+u′zρūz
∂

∂z
u′y︸ ︷︷ ︸

106

+ u′zρūx
∂

∂x
u′x︸ ︷︷ ︸

109

+u′zρūy
∂

∂y
u′x︸ ︷︷ ︸

112

+u′zρūz
∂

∂z
u′x︸ ︷︷ ︸

115

+u′xρūx
∂

∂x
u′z︸ ︷︷ ︸

118

+u′xρūy
∂

∂y
u′z︸ ︷︷ ︸

121

+u′xρūz
∂

∂z
u′z︸ ︷︷ ︸

124

+ u′zρūx
∂

∂x
u′y︸ ︷︷ ︸

127

+u′zρūy
∂

∂y
u′y︸ ︷︷ ︸

130

+u′zρūz
∂

∂z
u′y︸ ︷︷ ︸

133

+u′xρūx
∂

∂x
u′x︸ ︷︷ ︸

136

+u′xρūy
∂

∂y
u′x︸ ︷︷ ︸

139

+u′xρūz
∂

∂z
u′x︸ ︷︷ ︸

142

+ u′zρūx
∂

∂x
u′z︸ ︷︷ ︸

145

+u′zρūy
∂

∂y
u′z︸ ︷︷ ︸

148

+u′zρūz
∂

∂z
u′z︸ ︷︷ ︸

151

+u′xρūx
∂

∂x
u′y︸ ︷︷ ︸

154

+u′xρūy
∂

∂y
u′y︸ ︷︷ ︸

157

+u′xρūz
∂

∂z
u′y︸ ︷︷ ︸

160

.

To simplify these terms, we use the product rule (1.2) to combine two terms to one. An example

would be:

ρūz
∂

∂z
u′xu′y = u′yρūz

∂

∂z
u′x + u′xρūz

∂

∂z
u′y . (14.17)

After combining the terms, we can rewrite the sum by using the Einsteins summation convention

because the derivatives are always with respect to the mean quantities. Hence, we end up with 27

terms that can be expressed as:

ρūk
∂

∂xk
u′iu
′
j = ūk

∂

∂xk
ρu′iu

′
j . (14.18)

Now, the convective term is manipulated and derived. Combining all terms, we end up with:

ūk
∂ρu′iu

′
j

∂xk
+ ρu′ju

′
k

∂ūi
∂xk

+ ρu′iu
′
k

∂ūj
∂xk

+
∂

∂xk
ρu′iu

′
ju
′
k . (14.19)
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The Shear-Rate Term

a)

u′x

{
−
∂

∂x

[
µ

(
∂(ūx + u′x)

∂x
+
∂(ūx + u′x)

∂x

)]
−

∂

∂y

[
µ

(
∂(ūx + u′x)

∂y
+
∂(ūy + u′y)

∂x

)]

−
∂

∂z

[
µ

(
∂(ūx + u′x)

∂z
+
∂(ūz + u′z)

∂x

)]}
+ u′y

{
−
∂

∂x

[
µ

(
∂(ūz + u′z)

∂x
+
∂(ūx + u′x)

∂z

)]

−
∂

∂y

[
µ

(
∂(ūz + u′z)

∂y
+
∂(ūy + u′y)

∂z

)]
−

∂

∂z

[
µ

(
∂(ūz + u′z)

∂z
+
∂(ūy + u′y)

∂z

)]}

= −������
u′x

∂

∂x

(
µ
∂ūx

∂x

)
− u′x

∂

∂x

(
µ
∂u′x
∂x

)
−������
u′x

∂

∂x

(
µ
∂ūx

∂x

)
− u′x

∂

∂x

(
µ
∂u′x
∂x

)
−������
u′x

∂

∂y

(
µ
∂ūx

∂y

)
− u′x

∂

∂y

(
µ
∂u′x
∂y

)

−������
u′x

∂

∂y

(
µ
∂ūy

∂x

)
− u′x

∂

∂y

(
µ
∂u′y

∂x

)
−������
u′x

∂

∂z

(
µ
∂ūx

∂z

)
− u′x

∂

∂z

(
µ
∂u′x
∂z

)
−������
u′x

∂

∂z

(
µ
∂ūz

∂x

)
− u′x

∂

∂z

(
µ
∂u′z
∂x

)

−������
u′y

∂

∂x

(
µ
∂ūz

∂x

)
− u′y

∂

∂x

(
µ
∂u′z
∂x

)
−������
u′y

∂

∂x

(
µ
∂ūx

∂z

)
− u′y

∂

∂x

(
µ
∂u′x
∂z

)
−������
u′y

∂

∂y

(
µ
∂ūz

∂y

)
− u′y

∂

∂y

(
µ
∂u′z
∂y

)

−������
u′y

∂

∂y

(
µ
∂ūy

∂z

)
− u′y

∂

∂y

(
µ
∂u′y

∂z

)
−������
u′y

∂

∂z

(
µ
∂ūz

∂z

)
− u′y

∂

∂z

(
µ
∂u′z
∂z

)
−������
u′y

∂

∂z

(
µ
∂ūz

∂z

)
− u′y

∂

∂z

(
µ
∂u′z
∂z

)

= − u′x
∂

∂x

(
µ
∂u′x
∂x

)
− u′x

∂

∂x

(
µ
∂u′x
∂x

)
− u′x

∂

∂y

(
µ
∂u′x
∂y

)
− u′x

∂

∂y

(
µ
∂u′y

∂x

)
− u′x

∂

∂z

(
µ
∂u′x
∂z

)
− u′x

∂

∂z

(
µ
∂u′z
∂x

)

− u′y
∂

∂x

(
µ
∂u′z
∂x

)
− u′y

∂

∂x

(
µ
∂u′x
∂z

)
− u′y

∂

∂y

(
µ
∂u′z
∂y

)
− u′y

∂

∂y

(
µ
∂u′y

∂z

)
− u′y

∂

∂z

(
µ
∂u′z
∂z

)
− u′y

∂

∂z

(
µ
∂u′z
∂z

)

For the parts b) to i) we will just write the final terms:

b)

− u′x
∂

∂x

(
µ
∂u′y

∂x

)
− u′x

∂

∂x

(
µ
∂u′x
∂y

)
− u′x

∂

∂y

(
µ
∂u′y

∂y

)
− u′x

∂

∂y

(
µ
∂u′y

∂y

)
− u′x

∂

∂z

(
µ
∂u′y

∂z

)
− u′x

∂

∂z

(
µ
∂u′z
∂y

)

− u′y
∂

∂x

(
µ
∂u′x
∂x

)
− u′y

∂

∂x

(
µ
∂u′x
∂x

)
− u′y

∂

∂y

(
µ
∂u′x
∂y

)
− u′y

∂

∂y

(
µ
∂u′y

∂x

)
− u′y

∂

∂z

(
µ
∂u′x
∂z

)
− u′y

∂

∂z

(
µ
∂u′z
∂x

)

c)

− u′x
∂

∂x

(
µ
∂u′z
∂x

)
− u′x

∂

∂x

(
µ
∂u′x
∂z

)
− u′x

∂

∂y

(
µ
∂u′z
∂y

)
− u′x

∂

∂y

(
µ
∂u′y

∂z

)
− u′x

∂

∂z

(
µ
∂u′z
∂z

)
− u′x

∂

∂z

(
µ
∂u′z
∂z

)

− u′y
∂

∂x

(
µ
∂u′y

∂x

)
− u′y

∂

∂x

(
µ
∂u′x
∂y

)
− u′y

∂

∂y

(
µ
∂u′y

∂y

)
− u′y

∂

∂y

(
µ
∂u′y

∂y

)
− u′y

∂

∂z

(
µ
∂u′y

∂z

)
− u′y

∂

∂z

(
µ
∂u′z
∂y

)

d)

− u′y
∂

∂x

(
µ
∂u′x
∂x

)
− u′y

∂

∂x

(
µ
∂u′x
∂x

)
− u′y

∂

∂y

(
µ
∂u′x
∂y

)
− u′y

∂

∂y

(
µ
∂u′y

∂x

)
− u′y

∂

∂z

(
µ
∂u′x
∂z

)
− u′y

∂

∂z

(
µ
∂u′z
∂x

)

− u′z
∂

∂x

(
µ
∂u′z
∂x

)
− u′z

∂

∂x

(
µ
∂u′x
∂z

)
− u′z

∂

∂y

(
µ
∂u′z
∂y

)
− u′z

∂

∂y

(
µ
∂u′y

∂z

)
− u′z

∂

∂z

(
µ
∂u′z
∂z

)
− u′z

∂

∂z

(
µ
∂u′z
∂z

)

e)

− u′y
∂

∂x

(
µ
∂u′y

∂x

)
− u′y

∂

∂x

(
µ
∂u′x
∂y

)
− u′y

∂

∂y

(
µ
∂u′y

∂y

)
− u′y

∂

∂y

(
µ
∂u′y

∂y

)
− u′y

∂

∂z

(
µ
∂u′y

∂z

)
− u′y

∂

∂z

(
µ
∂u′z
∂y

)

− u′z
∂

∂x

(
µ
∂u′x
∂x

)
− u′z

∂

∂x

(
µ
∂u′x
∂x

)
− u′z

∂

∂y

(
µ
∂u′x
∂y

)
− u′z

∂

∂y

(
µ
∂u′y

∂x

)
− u′z

∂

∂z

(
µ
∂u′x
∂z

)
− u′z

∂

∂z

(
µ
∂u′z
∂x

)
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f)

− u′y
∂

∂x

(
µ
∂u′z
∂x

)
︸ ︷︷ ︸

∗

−u′y
∂

∂x

(
µ
∂u′x
∂z

)
− u′y

∂

∂y

(
µ
∂u′z
∂y

)
− u′y

∂

∂y

(
µ
∂u′y

∂z

)
− u′y

∂

∂z

(
µ
∂u′z
∂z

)
− u′y

∂

∂z

(
µ
∂u′z
∂z

)

− u′z
∂

∂x

(
µ
∂u′y

∂x

)
− u′z

∂

∂x

(
µ
∂u′x
∂y

)
− u′z

∂

∂y

(
µ
∂u′y

∂y

)
− u′z

∂

∂y

(
µ
∂u′y

∂y

)
− u′z

∂

∂z

(
µ
∂u′y

∂z

)
− u′z

∂

∂z

(
µ
∂u′z
∂y

)

g)

− u′z
∂

∂x

(
µ
∂u′x
∂x

)
− u′z

∂

∂x

(
µ
∂u′x
∂x

)
− u′z

∂

∂y

(
µ
∂u′x
∂y

)
− u′z

∂

∂y

(
µ
∂u′y

∂x

)
− u′z

∂

∂z

(
µ
∂u′x
∂z

)
− u′z

∂

∂z

(
µ
∂u′z
∂x

)

− u′x
∂

∂x

(
µ
∂u′z
∂x

)
− u′x

∂

∂x

(
µ
∂u′x
∂z

)
− u′x

∂

∂y

(
µ
∂u′z
∂y

)
− u′x

∂

∂y

(
µ
∂u′y

∂z

)
− u′x

∂

∂z

(
µ
∂u′z
∂z

)
− u′x

∂

∂z

(
µ
∂u′z
∂z

)

h)

− u′z
∂

∂x

(
µ
∂u′y

∂x

)
︸ ︷︷ ︸

∗∗

−u′z
∂

∂x

(
µ
∂u′x
∂y

)
− u′z

∂

∂y

(
µ
∂u′y

∂y

)
− u′z

∂

∂y

(
µ
∂u′y

∂y

)
− u′z

∂

∂z

(
µ
∂u′y

∂z

)
− u′z

∂

∂z

(
µ
∂u′z
∂y

)

− u′x
∂

∂x

(
µ
∂u′x
∂x

)
− u′x

∂

∂x

(
µ
∂u′x
∂x

)
− u′x

∂

∂y

(
µ
∂u′x
∂y

)
− u′x

∂

∂y

(
µ
∂u′y

∂x

)
− u′x

∂

∂z

(
µ
∂u′x
∂z

)
− u′x

∂

∂z

(
µ
∂u′z
∂x

)

i)

− u′z
∂

∂x

(
µ
∂u′z
∂x

)
− u′z

∂

∂x

(
µ
∂u′x
∂z

)
− u′z

∂

∂y

(
µ
∂u′z
∂y

)
− u′z

∂

∂y

(
µ
∂u′y

∂z

)
− u′z

∂

∂z

(
µ
∂u′z
∂z

)
− u′z

∂

∂z

(
µ
∂u′z
∂z

)

− u′x
∂

∂x

(
µ
∂u′y

∂x

)
− u′x

∂

∂x

(
µ
∂u′x
∂y

)
− u′x

∂

∂y

(
µ
∂u′y

∂y

)
− u′x

∂

∂y

(
µ
∂u′y

∂y

)
− u′x

∂

∂z

(
µ
∂u′y

∂z

)
− u′x

∂

∂z

(
µ
∂u′z
∂y

)

After the manipulation we find 102 terms. Again we want to put the fluctuation terms together,

hence we need the product rule. Analyzing the sum, we can figure out that there is no way to

apply the product rule. The trick is simply to add the missing 204 terms. One example is given

now. Taking the term (∗) of f) and (∗∗) of h), we get:

− u′y
∂

∂x

(
µ
∂u′z
∂x

)
− u′z

∂

∂x

(
µ
∂u′y
∂x

)
. (14.20)

This two terms cannot be merged, hence we need two terms in addition:

−

1︷ ︸︸ ︷
u′y

∂

∂x

(
µ
∂u′z
∂x

)
−

2︷ ︸︸ ︷
µ
∂u′y
∂x

∂u′z
∂x

+

3︷ ︸︸ ︷
µ
∂u′y
∂x

∂u′z
∂x︸ ︷︷ ︸

added

−

4︷ ︸︸ ︷
u′z

∂

∂x

(
µ
∂u′y
∂x

)

−

5︷ ︸︸ ︷
µ
∂u′z
∂x

∂u′y
∂x

+

6︷ ︸︸ ︷
µ
∂u′z
∂x

∂u′y
∂x︸ ︷︷ ︸

added

. (14.21)
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Now we are able to combine term 1 – 2 and 4 – 5 using the product rule. Furthermore term 3 and

6 are similar and can be combined too:

− ∂

∂x
u′y

(
µ
∂u′z
∂x

)
︸ ︷︷ ︸

7

− ∂

∂x
u′z

(
µ
∂u′y
∂x

)
︸ ︷︷ ︸

8

+2µ
∂u′z
∂x

∂u′y
∂x

. (14.22)

Now we see that the term 7 and 8 can be combined using the product rule again. Finally we end

up with:

− ∂

∂x

(
µ
∂u′yu′z
∂x

)
+ 2µ

∂u′z
∂x

∂u′y
∂x

. (14.23)

Repeating this procedure for all terms, we will reduce the already existing 102 terms of a) to i) to

54. At the end we would realize that we can rewrite the sum of the 54 terms as:

− ∂

∂xk

(
µ
∂u′iu

′
j

∂xk

)
= − ∂

∂xk

(
µ
∂u′iu

′
j

∂xk

)
. (14.24)

The new introduced terms (due to the trick), can be expressed as:

2µ
∂u′i
∂xk

∂u′j
∂xk

= 2µ
∂u′i
∂xk

∂u′j
∂xk

. (14.25)

Summing up, the shear-rate terms can be written as:

− ∂

∂xk

(
µ
∂u′iu

′
j

∂xk

)
+ 2µ

∂u′i
∂xk

∂u′j
∂xk

. (14.26)

The pressure derivative

a)

u′x
∂(p̄+ p′)

∂x
+ u′y

∂(p̄+ p′)

∂z
=
�
��u′x
∂p̄

∂x
+ u′x

∂p′

∂x
+
�

��u′y
∂p̄

∂z
+ u′y

∂p′

∂z
= u′x

∂p′

∂x
+ u′y

∂p′

∂z
, (14.27)

b)

u′x
∂(p̄+ p′)

∂y
+ u′y

∂(p̄+ p′)

∂x
=
�
��u′x
∂p̄

∂y
+ u′x

∂p′

∂y
+
�
��u′y
∂p̄

∂x
+ u′y

∂p′

∂x
= u′x

∂p′

∂y
+ u′y

∂p′

∂x
, (14.28)

c)

u′x
∂(p̄+ p′)

∂z
+ u′y

∂(p̄+ p′)

∂y
=
�
��u′x
∂p̄

∂z
+ u′x

∂p′

∂z
+
�

��u′y
∂p̄

∂y
+ u′y

∂p′

∂y
= u′x

∂p′

∂z
+ u′y

∂p′

∂y
, (14.29)

d)

u′y
∂(p̄+ p′)

∂x
+ u′z

∂(p̄+ p′)

∂z
=
�
��u′y
∂p̄

∂x
+ u′y

∂p′

∂x
+
�

��u′z
∂p̄

∂z
+ u′z

∂p′

∂z
= u′y

∂p′

∂x
+ u′z

∂p′

∂z
, (14.30)

e)

u′y
∂(p̄+ p′)

∂y
+ u′z

∂(p̄+ p′)

∂x
=
�
��u′y
∂p̄

∂y
+ u′y

∂p′

∂y
+
�

��u′z
∂p̄

∂x
+ u′z

∂p′

∂x
= u′y

∂p′

∂y
+ u′z

∂p′

∂x
, (14.31)
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f)

u′y
∂(p̄+ p′)

∂z
+ u′z

∂(p̄+ p′)

∂y
=
�
��u′y
∂p̄

∂z
+ u′y

∂p′

∂z
+
�
��u′z
∂p̄

∂y
+ u′z

∂p′

∂y
= u′y

∂p′

∂z
+ u′z

∂p′

∂y
, (14.32)

g)

u′z
∂(p̄+ p′)

∂x
+ u′x

∂(p̄+ p′)

∂z
=
�
��u′z
∂p̄

∂x
+ u′z

∂p′

∂x
+
�

��u′x
∂p̄

∂z
+ u′x

∂p′

∂z
= u′z

∂p′

∂x
+ u′x

∂p′

∂z
, (14.33)

h)

u′z
∂(p̄+ p′)

∂y
+ u′x

∂(p̄+ p′)

∂x
=
�
��u′z
∂p̄

∂y
+ u′z

∂p′

∂y
+
�
��u′x
∂p̄

∂x
+ u′x

∂p′

∂x
= u′z

∂p′

∂y
+ u′x

∂p′

∂x
, (14.34)

i)

u′z
∂(p̄+ p′)

∂z
+ u′x

∂(p̄+ p′)

∂y
=
�
��u′z
∂p̄

∂z
+ u′z

∂p′

∂z
+
�
��u′x
∂p̄

∂y
+ u′x

∂p′

∂y
= u′z

∂p′

∂z
+ u′x

∂p′

∂y
. (14.35)

Summing up and sorting:

u′x
∂p′

∂x
+ u′x

∂p′

∂y
+ u′x

∂p′

∂z
+ u′y

∂p′

∂x
+ u′y

∂p′

∂y
+ u′y

∂p′

∂z
+ u′z

∂p′

∂x
+ u′z

∂p′

∂y
+ u′z

∂p′

∂z

+ u′x
∂p′

∂x
+ u′y

∂p′

∂x
+ u′z

∂p′

∂x
+ u′x

∂p′

∂y
+ u′y

∂p′

∂y
+ u′z

∂p′

∂y
+ u′x

∂p′

∂z
+ u′y

∂p′

∂z
+ u′z

∂p′

∂z
. (14.36)

leads to the following expression:

u′i
∂p′

∂xj
+ u′j

∂p′

∂xi
. (14.37)

Finally we use the product rule,

u′i
∂p′

∂xj
= −p′ ∂u

′
i

∂xj
+
∂p′u′i
∂xj

, (14.38)

u′j
∂p′

∂xi
= −p′

∂u′j
∂xi

+
∂p′u′j
∂xi

, (14.39)

− p′ ∂u
′
i

∂xj
+
∂p′u′i
∂xj

− p′
∂u′j
∂xi

+
∂p′u′j
∂xi

. (14.40)

to get the final form. By using the Kronecker delta function (due to the fact that the pressure is

only in the main diagonal of a matrix), we get:

−p′
[
∂u′i
∂xj

+
∂u′j
∂xi

]
+

∂

∂xk

[
p′u′jδik + p′u′iδjk

]
. (14.41)

Now the derivation of the Reynolds-Stress equation is done. Putting all terms together, we can

write the Reynolds-stress equation in the following form:

∂ρu′ju
′
i

∂t
+ ūk

∂ρu′iu
′
j

∂xk
+ ρu′ju

′
k

∂ūi
∂xk

+ ρu′iu
′
k

∂ūj
∂xk

+
∂

∂xk
ρu′iu

′
ju
′
k −

∂

∂xk

(
µ
∂u′iu

′
j

∂xk

)

+ 2µ
∂u′i
∂xk

∂u′j
∂xk
− p′

[
∂u′i
∂xj

+
∂u′j
∂xi

]
+

∂

∂xk

[
p′u′jδik + p′u′iδjk

]
= 0 . (14.42)
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Applying the definition of the Reynolds-Stress tensor (9.40), re-order the terms and multiply the

whole equation by −1, we end up with the following form; recall: In almost all literatures we find

the definition of the Reynolds-Stress tensor denoted by τ . In addition we use the relation between

the kinematic and dynamic viscosity: µ = νρ. Hence, we get:

∂σ̄tji

∂t
+ ūk

∂σ̄tij

∂xk
= −σ̄tjk

∂ūi
∂xk
− σ̄tik

∂ūj
∂xk

+
∂

∂xk

(
ν
∂σ̄tij

∂xk

)
+ 2µ

∂u′i
∂xk

∂u′j
∂xk︸ ︷︷ ︸

εij

− p′
[
∂u′i
∂xj

+
∂u′j
∂xi

]
︸ ︷︷ ︸

Πij

+
∂

∂xk
ρu′iu

′
ju
′
k +

∂

∂xk

[
p′u′jδik + p′u′iδjk

]
︸ ︷︷ ︸

∂
∂xk

(
ρu′iu

′
ju
′
k + p′u′jδik + p′u′iδjk

)
︸ ︷︷ ︸

Cijk

. (14.43)

Finally, we can write the common Reynolds-Stress equation:

∂σ̄tji

∂t
+ ūk

∂σ̄tij

∂xk
= −σ̄tjk

∂ūi
∂xk
− σ̄tik

∂ūj
∂xk

+
∂

∂xk

(
ν
∂σ̄tij

∂xk
+ Cijk

)
+ εij −Πij . (14.44)
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