
Solution initialization using codeStream

• When it comes to initial conditions, you can use the utility setFields.

• This utility is very flexible, you can even read STL files and use them to
initialize your fields.

• But in case that you can not get the desired results using setFields, you
can implement your own initial conditions using codeStream.

• To implement initial conditions using codeStream, we proceed in a similar
way as for boundary conditions.

• The source code and binaries are automatically generated and copied in the
directory dynamicCode of the current case.

• The source code is compiled automatically at run-time.

• The use of codeStream is a very good alternative to avoid high level
programming of initial conditions or the use of external libraries.

• Hereafter we will use codeStream to implement new initial conditions.

Solution initialization using codeStream

internalField #codeStream
{

{
codeInclude
#{

#include "fvCFD.H"
#};

codeOptions
#{

-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude

#};

codeLibs
#{

-lmeshTools \
-lfiniteVolume

#};

code
#{

#};
};

}

Body of the codeStream directive for initial conditions

Use codeStream to set the value
of the initial conditions

Files needed for compilation

Compilation options

Libraries needed for compilation.
Needed if you want to visualize the
output of the initial conditions at
time zero

Insert your code here.
At this point, you need to know
how to access internal mesh
information

In
iti

a
l c

o
nd

iti
on

s

Solution initialization using codeStream

Implementation of an elliptic initialization using codeStream

Initialization using codeStream Initialization using a STL with setFields

• Let us implement an elliptic initialization using codeStream.

• The firs step is to know your domain and identify the region that you want to initialize.

• Then you will need to do a little bit of math to get the expression for the initialization.

• In this example, we are also going to show you how to do the same initialization by
reading a STL file with the utility setFields.

Phase 1

Phase 2

In
iti

a
liz

at
io

n
us

in
g

S
T

L

Solution initialization using codeStream

• The codeStream IC in the body of the file alpha.phase1 is as follows,

Depending of what are you trying
to do, you will need to add new
files, options and libraries.

For most of the cases, this part is
always the same.

internalField #codeStream
{

{
codeInclude
#{

#include "fvCFD.H"
#};

codeOptions
#{

-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude

#};

codeLibs
#{

-lmeshTools \
-lfiniteVolume

#};

code
#{

#};
};

}

Use codeStream to set the value
of the initial conditions

Insert your code here.
At this point, you need to know
how to access internal mesh
information

code
#{

const IOdictionary& d = static_cast<const IOdictionary&>(dict);
const fvMesh& mesh = refCast<const fvMesh>(d.db());

scalarField alpha(mesh.nCells(), 0.);

scalar he = 0.5;
scalar ke = 0.5;
scalar ae = 0.3;
scalar be = 0.15;

forAll(alpha, i)
{

const scalar x = mesh.C()[i][0];
const scalar y = mesh.C()[i][1];
const scalar z = mesh.C()[i][2];

if (pow(y-ke,2) <= ((1 - pow(x-he,2)/pow(ae,2))*pow(be,2)))
{

alpha[i] = 1.;
}

}
alpha.writeEntry("", os);

#};

Solution initialization using codeStream

• The code section of the codeStream IC in the body of the file alpha.phase1 is as follows,

Initialize scalar field to zero

A
cc

e
ss

 in
te

rn
a

l m
e

sh
 in

fo
rm

a
tio

n

Initialize variables

Access cell centers coordinates

forAll loop to access cell centers and to assign alpha values.
Notice the alpha was previously initialized.
The size of the loop is defined by alpha and the iterator is i.

Write output to input dictionary

A
ss

ig
n

 v
a

lu
e

to
 a

lp
ha

If
 th

is
 c

on
di

tio
n

is
 tr

u
e,

 d
o

th
e

fo
llo

w
in

g
 s

ta
te

m
e

nt

Solution initialization using codeStream

• This case is ready to run, the input files are located in the directory
$PTOFC/101programming/codeStream_INIT/elliptical_IC

• To run the case, type in the terminal,

1. $> cd $PTOFC/101programming/codeStream_INIT/elliptical_IC

2. $> foamCleanTutorials

3. $> blockMesh

4. $> rm –rf 0

5. $> cp –r 0_org 0

6. $> paraFoam

7. $> interFoam | tee log

8. $> paraFoam

Implementation of an elliptic initialization using codeStream

• In step 6, we launch paraFoam to visualize the initialization.

• FYI, you can run in parallel with no problem.

Solution initialization using codeStream

codeStream initialization
Visualization of volume fraction (alpha.phase1)

www.wolfdynamics.com/wiki/BCIC/bubble_zeroG.gif

Implementation of an elliptic initialization using codeStream

• If everything went fine, you should get something like this

Surface tension driven flow - Bubble in a zero gravity flow using interFoam

setFields initialization
Visualization of volume fraction (alpha.phase1)
www.wolfdynamics.com/wiki/BCIC/bubble_zeroG_SF.gif

Solution initialization using codeStream

Elliptic initialization using setFields

• Let us do the same initialization using a STL file with setFields.

• First, you will need to create the solid model that encloses the region you want to
initialize. For this, you can use your favorite CAD/solid modeling software.
Remember to save the geometry is STL format.

• Then you will need to read in the STL file using setFields. You will need to modify
the setFieldsDict dictionary.

Region defined by
the STL file

Computational domain

Solution initialization using codeStream

The setFieldsDict dictionary

defaultFieldValues
(

volScalarFieldValue alpha.phase1 0
);

regions
(

surfaceToCell
{

file "./geo/ellipse.stl";

outsidePoints ((0.5 0.85 0));

includeInside true;

includeOutside false;

includeCut false;

fieldValues
(

volScalarFieldValue alpha.phase1 1
);

}
);

Initialize the whole domain to zero

setFields method to read STL files.
If you want to know all the options
available use a word that does not exist
in the enumerator list (e.g. banana)

Location of the STL file to read

A point located outside the STL

Use what is inside the STL

Use what is outside the STL

Include cells cut by the STL

Initialize this value.
In this case the initialization will be inside
the STL

Solution initialization using codeStream

Elliptic initialization using setFields

• This case is ready to run, the input files are located in the directory
$PTOFC/101programming/codeStream_INIT/elliptical_IC

• To run the case, type in the terminal,

1. $> cd $PTOFC/101programming/codeStream_INIT/elliptical_IC

2. $> foamCleanTutorials

3. $> blockMesh

4. $> rm –rf 0

5. $> cp –r 0_org 0

6. $> setFields

7. $> paraFoam

• At this point, compare this initialization with the previous one.

• Also, feel free to launch the simulation using interFoam.

Solution initialization using codeStream

Rayleigh-Taylor instability initialization

• Let us study the Rayleigh-Taylor
instability.

• In this case, we have two phases with
different physical properties (one phase
is heavier).

• To onset this instability, we need to
perturbate somehow the interface
between the two phases.

• We will use codeStream to initialize the
two phases.

• For simplicity, we will only show the
code section of the input files.

• The entries codeInclude, codeOptions,
and codeLibs, are the same most of the
times.

Solution initialization using codeStream

• The code section of the codeStream IC in the body of the file alpha.phase1 is as follows,

code
#{

const IOdictionary& d = static_cast<const IOdictionary&>(dict);
const fvMesh& mesh = refCast<const fvMesh>(d.db());

scalarField alpha(mesh.nCells(), 0.);

forAll(alpha, i)
{

const scalar x = mesh.C()[i][0];
const scalar y = mesh.C()[i][1];

if (y >= -0.05*cos(2*constant::mathematical::pi*x))
{

alpha[i] = 1.;
}

}

alpha.writeEntry("", os);
#};

• For simplicity, we only show the code section.

• The rest of the body of the codeStream IC is a template.

Initialize scalar field to zero

Access cell centers coordinates

Access internal mesh information

A
ss

ig
n

 v
a

lu
e

to
 a

lp
ha

Write output to input dictionary

Solution initialization using codeStream

Rayleigh-Taylor instability initialization

• This case is ready to run, the input files are located in the directory
$PTOFC/101programming/codeStream_INIT/rayleigh_taylor

• To run the case, type in the terminal,

1. $> cd $PTOFC/101programming/codeStream_INIT/rayleigh_taylor

2. $> foamCleanTutorials

3. $> blockMesh

4. $> interFoam | tee log

5. $> paraFoam

• FYI, you can run in parallel with no problem.

Solution initialization using codeStream

Rayleigh-Taylor instability initialization

• If everything went fine, you should get something like this

Visualization of volume fraction, static pressure and velocity
magnitude

www.wolfdynamics.com/wiki/BCIC/rayleigh_taylor_ins1.gif

Initial conditions

Solution initialization using codeStream

Filling a tank using codeStream and codedFixedValue

Water enters here
This is a single boundary patch

Initial water level

• Let us do a final example.

• We will implement BCs and ICs at the same.

• For simplicity, we will only show the code section of the input files.

• This setup is similar to the last example of the previous section (filling a tank using
codedFixedValue).

Solution initialization using codeStream

• The code section of the codeStream IC in the body of the file alpha.water is as follows,

internalField #codeStream
{

...

...

...
code
#{

const IOdictionary& d = static_cast<const IOdictionary&>(dict);
const fvMesh& mesh = refCast<const fvMesh>(d.db());

scalarField alpha(mesh.nCells(), 0.);

forAll(alpha, i)
{

const scalar x = mesh.C()[i][0];
const scalar y = mesh.C()[i][1];
const scalar z = mesh.C()[i][2];

if (y <= 0.2)
{

alpha[i] = 1.;
}

}

alpha.writeEntry("", os);
#};

Access cell centers
coordinates

A
cc

es
s

in
te

rn
a

l m
e

sh
 in

fo
rm

a
tio

n

Initialize scalar field to zero

Write output to input dictionary

Assign value to alpha according to
conditional structure

Use codeStream to set the
value of the initial conditions

leftWall
{

type codedFixedValue;
value uniform (0 0 0);

redirectType inletProfile1;

code
#{

const fvPatch& boundaryPatch = patch();
const vectorField& Cf = boundaryPatch.Cf();
vectorField& field = *this;

scalar min = 0.5;
scalar max = 0.7;

scalar t = this->db().time().value();
...
...
...

#};
}

Solution initialization using codeStream

• The code section of the codeFixedValue BC in the body of the file U is as follows,

Access boundary mesh
information and initialize
vector field field

Access time

Initialize variables

Unique name of the BC
Do not use the same name in other patches

Use codedFixedValue BC and initialize value.
The initialization is only needed for paraview
in order to visualize something at time zero.

Name of the patch where we want to implement the boundary condition

Code section. The actual implementation of the BC is done here

code
#{

...

...

...

forAll(Cf, faceI)
{

if (
(Cf[faceI].z() > min) &&
(Cf[faceI].z() < max) &&
(Cf[faceI].y() > min) &&
(Cf[faceI].y() < max)

)
{

if (t < 2.)
{

field[faceI] = vector(1,0,0);
}
else
{

field[faceI] = vector(0,0,0);
}

}
}

#};

Solution initialization using codeStream

Use conditional structure to
select faces.

Loop using size of boundary patch (Cf) and iterator
faceI.
This is equivalent to:

for (int faceI=0; Cf.size()<faceI; faceI++)

Use conditional structure to
add time dependency and
assign values to the
selected faces.

Code section. The actual implementation of the BC is done here

• The code section of the codeFixedValue BC in the body of the file U is as follows,

leftWall
{

type codedFixedValue;
value uniform 0;

redirectType inletProfile2;

code
#{

const fvPatch& boundaryPatch = patch();
const vectorField& Cf = boundaryPatch.Cf();
scalarField& field = *this;

field = patchInternalField();

scalar min = 0.5;
scalar max = 0.7;

scalar t = this->db().time().value();
...
...
...

#};
}

Solution initialization using codeStream

Access boundary mesh
information and initialize
scalar field field

Access time

Initialize variables

Unique name of the BC
Do not use the same name in other patches

Use codedFixedValue BC and initialize value.
The initialization is only needed for paraview
in order to visualize something at time zero.

Name of the patch where we want to implement the boundary condition

• The code section of the codeFixedValue BC in the body of the file alpha.water is as follows,

Code section. The actual implementation of the BC is done here

Assign value from the internal field to the patch

code
#{

...

...

...

forAll(Cf, faceI)
{

if (
(Cf[faceI].z() > min) &&
(Cf[faceI].z() < max) &&
(Cf[faceI].y() > min) &&
(Cf[faceI].y() < max)

)
{

if (t < 2.)
{

field[faceI] = 1.;
}
else
{

field[faceI] = 0.;
}

}
}

#};

Solution initialization using codeStream

Use conditional structure to
select faces

Loop using size of boundary patch (Cf) and iterator
faceI.
This is equivalent to:

for (int faceI=0; Cf.size()<faceI; faceI++)

Use conditional structure to add
time dependency and assign
values to the selected faces.

Code section. The actual implementation of the BC is done here

• The code section of the codeFixedValue BC in the body of the file alpha.water is as follows,

Solution initialization using codeStream

Filling a tank using codeStream and codedFixedValue

• If everything went fine, you should get something like this

Visualization of water phase (alpha.water)

www.wolfdynamics.com/wiki/BCIC/filltank2.gif

Volume integral of water entering
the domain

